DifferentialEquations.jl incorporates all of these under a single interface
http://docs.juliadiffeq.org/latest/tutorials/ode_example.html
du(t)dt=f(u(t)p,t)where u(t0)=u0 is the known initial value. We want to know u(t) for t∈[t0,tf]
Solve for u(t) for t∈[0,5]
using DifferentialEquations
f(u,p,t) = p*u
u0=1.0
p = 0.98
tspan = (0.0,5.0)
prob = ODEProblem(f,u0,tspan,p)
sol = solve(prob);
using Plots; gr()
# Use the plot recipe, along with some plotting attributes
plot(sol,linewidth=5,title="My Bank Account",
xaxis="Time (t)",yaxis="Money!",legend=false)
See http://docs.juliadiffeq.org/latest/basics/common_solver_opts.html
sol = solve(prob)
println(length(sol.t))
sol = solve(prob,abstol=1e-6,reltol=1e-6)
println(length(sol.t))
sol = solve(prob,saveat=0.5,reltol=1e-6)
println(sol.t)
sol = solve(prob,tstops=[0.5],reltol=1e-4)
println(sol.t)
sol = solve(prob,reltol=1e-6,save_everystep=false)
println(sol.t)
11 15 [0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0] [0.0,0.0634774,0.221501,0.43294,0.5,0.696266,0.923443,1.20696,1.53056,1.89898,2.30449,2.74501,3.21551,3.71248,4.23208,4.77109,5.0] [0.0,5.0]
sol = solve(prob,Tsit5())
println(sol.t[5]) # 5th timepoint
println(sol[5]) # 5th timepoint value
println([t+2u for (t,u) in zip(sol.t,sol.u)])
1.106052911995544 2.956279956560924 [2.0,2.30727,3.17657,4.63952,7.01861,11.2071,18.9435,34.2493,66.3366,137.407,273.572]
DifferentialEquations.jl comes with interpolations on the solution type
sol(0.45) # The value of the solution at t=0.45
http://docs.juliadiffeq.org/latest/solvers/ode_solve.html
DifferentialEquations.jl is composed of many (30+?) packages which together provide its functionality under one interface. For Ordinary Differential Equations, we have:
dopri
and radau
DifferentialEquations.jl also provides automatic detection of the appropriate algorithm
# Automatically uses CVODE_BDF from Sundials
sol = solve(prob,alg_hints=[:stiff],reltol=1e-8,abstol=1e-8)
# Use Tsit5 from OrdinaryDiffEq
sol = solve(prob,Tsit5());
# Use CVODE_BDF from Sundials
sol = solve(prob,CVODE_BDF());
using ODEInterfaceDiffEq
# Use radau from ODEInterfaceDiffEq
sol = solve(prob,radau());
*DiffEq
Libraries¶The *DiffEq
libraries (OrdinaryDiffEq.jl, StochasticDiffEq.jl, DelayDiffEq.jl) are the native Julia solvers. They have a lot of unique features:
Number
and AbstractArray
typesThe wrapped libraries, while classics (Sundials.jl, ODEInterfaceDiffEq.jl) are restricted to Vector{Float64}
.
http://docs.juliadiffeq.org/latest/basics/compatibility_chart.html
BS3()
for fast low accuracy non-stiffTsit5()
for standard non-stiff. This is the first algorithm to try in most cases.Vern7()
for high accuracy non-stiffRosenbrock23()
for stiff equations with Julia-defined types, events, etc.radau()
for stiff equations at higher accuracy on Vector{Float64}
CVODE_BDF()
for large stiff equations (discretizations of PDEs) on Vector{Float64}
ode23
--> BS3()
ode45
/dopri5
--> DP5()
, though in most cases Tsit5()
is more efficientode23s
--> Rosenbrock23()
ode113
--> CVODE_Adams()
, though in many cases Vern7()
or Vern8()
are more efficientdop853
--> DP8()
, though in most cases Vern7()
or Vern8()
are more efficientode15s
/vode
--> CVODE_BDF()
, though in many cases radau()
is more efficientode23t
--> Trapezoid()
lsoda
--> lsoda()
(requires Pkg.add("LSODA"); using LSODA
)ode15i
--> IDA()
function lorenz(du,u,p,t)
du[1] = 10.0(u[2]-u[1])
du[2] = u[1]*(28.0-u[3]) - u[2]
du[3] = u[1]*u[2] - (8/3)*u[3]
end
u0 = [1.0;0.0;0.0]
tspan = (0.0,25.0)
prob = ODEProblem(lorenz,u0,tspan)
sol = solve(prob,Tsit5());
plot(sol,vars=(1,2,3))
plot(sol,vars=(1,2,3),denseplot=false)
g = @ode_def LorenzExample begin
dx = σ*(y-x)
dy = x*(ρ-z) - y
dz = x*y - β*z
end σ ρ β
p = [10.0,28.0,8/3]
(::LorenzExample) (generic function with 15 methods)
using StaticArrays, DifferentialEquations
A = big.(@SMatrix [ 1.0 0.0 0.0 -5.0
4.0 -2.0 4.0 -3.0
-4.0 0.0 0.0 1.0
5.0 -2.0 2.0 3.0])
u0 = big.(@SMatrix rand(4,2))
tspan = (0.0,1.0); f_SA(u,p,t) = A*u
prob = ODEProblem(f_SA,u0,tspan);
sol = solve(prob,Tsit5()); plot(sol)
using Unitful
f_units(y,p,t) = 0.5*y / 3.0u"s"
u0 = 1.0u"N"
prob = ODEProblem(f_units,u0,(0.0u"s",1.0u"s"))
sol =solve(prob,Tsit5());
println(sol.t[end])
println(sol[end])
sol(0.5u"s")
1.0 s 1.1813604129914028 N
using DifferentialEquations, SymEngine
y0 = symbols(:y0)
u0 = y0
f_sym(u,p,t) = 2u
prob = ODEProblem(f_sym,u0,(0.0,1.0))
sol = solve(prob,RK4(),dt=1/10);
sol = solve(prob,RK4(),dt=1/1000)
end_solution = lambdify(sol[end])
println(end_solution(2)) # 14.778112197857341
println(2exp(2)) # 14.7781121978613
println(end_solution(3)) # 22.167168296786013
println(3exp(2)) # 22.16716829679195
14.778112197857341 14.7781121978613 22.167168296786013 22.16716829679195
DifferentialEquations.jl is a research lab which includes many new methods
using DifferentialEquations, Plots, ODEInterfaceDiffEq, ODE
# 2D Linear ODE
function test_f(du,u,p,t)
for i in 1:length(u)
du[i] = 1.01*u[i]
end
end
function test_f(::Type{Val{:analytic}},u₀,p,t)
u₀*exp(1.01*t)
end
tspan = (0.0,10.0)
prob = ODEProblem(test_f,rand(100,100),tspan)
abstols = 1./10.^(3:13)
reltols = 1./10.^(0:10);
setups = [Dict(:alg=>DP5())
Dict(:alg=>ode45())
Dict(:alg=>dopri5())
Dict(:alg=>Tsit5())]
names = ["DifferentialEquations";"ODE";"ODEInterface";"DifferentialEquations Tsit5"]
wp = ode_workprecision_set(prob,abstols,reltols,setups;names=names,save_everystep=false);
plot(wp)
You can directly apply dynamic behavior to an ODE through its callbacks and event handling
function b_condition(u,t,integrator) # Event when event_f(t,u) == 0
u[1]
end
function b_affect!(integrator)
integrator.u[2] = -integrator.u[2]
end
cb = ContinuousCallback(b_condition,b_affect!)
bb = @ode_def_bare BallBounce begin
dy = v
dv = -g
end g=9.81
u0 = [50.0,0.0]
tspan = (0.0,15.0)
prob = ODEProblem(bb,u0,tspan)
sol = solve(prob,Tsit5(),callback=cb);
plot(sol,plotdensity=1000)
Let's model a growing cell population
X
X
hits 1, the cell dividesX
is created less rapidlyusing DifferentialEquations, Plots
function growth(du,u,p,t)
for i in 1:length(u)
du[i] = 0.3u[i]/length(u)
end
end
function condition(u,t,integrator) # Event when event_f(t,u) == 0
1-maximum(u)
end
function affect!(integrator)
u = integrator.u
resize!(integrator,length(u)+1)
maxidx = findmax(u)[2]
Θ = rand()
u[maxidx] = Θ
u[end] = 1-Θ
length(u) == 10 && terminate!(integrator)
nothing
end
callback = ContinuousCallback(condition,affect!)
u0 = [0.2]
tspan = (0.0,100.0)
prob = ODEProblem(growth,u0,tspan)
sol = solve(prob,callback=callback);
plot(sol.t,map((x)->length(x),sol[:]),lw=3,
ylabel="Number of Cells",xlabel="Time")
ts = linspace(0,sol.t[end],1000)
plot(ts,map((x)->x[1],sol.(ts)),lw=3,
ylabel="Amount of X in Cell 1",xlabel="Time")
This leads to more sustainable scientific software development:
using MultiScaleArrays
using OrdinaryDiffEq, DiffEqBase, StochasticDiffEq
# Define a hierarchy
immutable Cell{B} <: AbstractMultiScaleArrayLeaf{B}
x::Vector{B}
end
immutable Population{T<:AbstractMultiScaleArray,B<:Number} <: AbstractMultiScaleArray{B}
x::Vector{T}
y::Vector{B}
end_idxs::Vector{Int}
end
immutable Tissue{T<:AbstractMultiScaleArray,B<:Number} <: AbstractMultiScaleArray{B}
x::Vector{T}
y::Vector{B}
end_idxs::Vector{Int}
end
immutable Embryo{T<:AbstractMultiScaleArray,B<:Number} <: AbstractMultiScaleArrayHead{B}
x::Vector{T}
y::Vector{B}
end_idxs::Vector{Int}
end
cell1 = Cell([1.0;2.0;3.0])
cell2 = Cell([4.0;5])
population = construct(Population,deepcopy([cell1,cell2])) # Make a Population from cells
cell3 = Cell([3.0;2.0;5.0])
cell4 = Cell([4.0;6])
population2 = construct(Population,deepcopy([cell3,cell4]))
tissue1 = construct(Tissue,deepcopy([population,population2])) # Make a Tissue from Populations
tissue2 = construct(Tissue,deepcopy([population2,population]))
embryo = construct(Embryo,deepcopy([tissue1,tissue2])); # Make an embryo from Tissues
function cell_ode(dcell,cell,p,t)
m = mean(cell)
for i in eachindex(cell)
dcell[i] = -m*cell[i]
end
end
function embryo_ode(dembryo,embryo,p,t)
for (cell,y,z) in LevelIterIdx(embryo,2)
cell_ode(@view dembryo[y:z],cell,p,t)
end
end
# Have a cell divide at t=0.5
tstop = [0.5]
function grow_condition(u,t,integrator)
t ∈ tstop
end
function grow_affect!(integrator)
add_daughter!(integrator,integrator.u[1,1,1],1,1)
end
growing_cb = DiscreteCallback(grow_condition,grow_affect!)
prob = ODEProblem(embryo_ode,embryo,(0.0,1.0));
sol = solve(prob,Tsit5(),callback=growing_cb,tstops=tstop)
sol[end]
Embryo{Tissue{Population{Cell{Float64},Float64},Float64},Float64}(Tissue{Population{Cell{Float64},Float64},Float64}[Tissue{Population{Cell{Float64},Float64},Float64}(Population{Cell{Float64},Float64}[Population{Cell{Float64},Float64}(Cell{Float64}[Cell{Float64}([0.290911,0.581821,0.872732]),Cell{Float64}([1.16364,1.45455]),Cell{Float64}([0.0,0.0,0.0])],Float64[],[3,5,8]),Population{Cell{Float64},Float64}(Cell{Float64}[Cell{Float64}([0.600023,0.400015,1.00004]),Cell{Float64}([0.80003,1.20005])],Float64[],[3,5])],Float64[],[8,13]),Tissue{Population{Cell{Float64},Float64},Float64}(Population{Cell{Float64},Float64}[Population{Cell{Float64},Float64}(Cell{Float64}[Cell{Float64}([0.600023,0.400015,1.00004]),Cell{Float64}([0.80003,1.20005])],Float64[],[3,5]),Population{Cell{Float64},Float64}(Cell{Float64}[Cell{Float64}([0.250004,0.500008,0.750013]),Cell{Float64}([1.00002,1.25002])],Float64[],[3,5])],Float64[],[5,10])],Float64[],[13,23])
Well-known model: the Black-Scholes Model
using DifferentialEquations, Plots; gr()
α=1.01; β=0.87; u₀=1.0
bs_f(u,p,t) = α*u
bs_g(u,p,t) = β*u
bs_f(::Type{Val{:analytic}},u₀,p,t,W) = u₀*exp((α-(β^2)/2)*t+β*W)
prob = SDEProblem(bs_f,bs_g,u₀,(0.0,1.0))
sol = solve(prob,EM(),dt=1/2^(4))
plot(sol,plot_analytic=true)
sol =solve(prob,SRIW1())
plot(sol,plot_analytic=true)
Many models cannot be solved without these new methods. Even those that can are faster with them.
Gillespie simulations are discrete models which change stochastically over time.
These types of models are related to differential equations
prob = DiscreteProblem([100,1,0],(0.0,100.0))
rate = (u,p,t) -> (0.1/100.0)*u[1]*u[2]
jump_affect! = function (integrator)
integrator.u[1] -= 1
integrator.u[2] += 1
end
jump = ConstantRateJump(rate,jump_affect!)
rate = (u,p,t) -> 0.01u[2]
jump_affect! = function (integrator)
integrator.u[2] -= 1
integrator.u[3] += 1
end
jump2 = ConstantRateJump(rate,jump_affect!)
jump_prob = JumpProblem(prob,Direct(),jump,jump2)
DiffEqJump.JumpProblem{P,A,C,J<:Union{DiffEqJump.AbstractJumpAggregator,Void},J2} with problem DiffEqBase.DiscreteProblem{uType,tType,isinplace,F,C} and aggregator DiffEqJump.Direct Number of constant rate jumps: 2 Number of variable rate jumps: 0
sol = solve(jump_prob,Discrete(apply_map=false));
plot(sol)
diff_f = function (du,u,p,t)
du[4] = u[2]*u[3]/1000 - u[1]*u[2]/100000
end
diff_g = function (du,u,p,t)
du[4] = 0.1u[4]
end
prob = SDEProblem(diff_f,diff_g,[100.0,1.0,0.0,1.0],(0.0,100.0))
jump_prob = JumpProblem(prob,Direct(),jump,jump2)
sol = solve(jump_prob,SRIW1(),abstol=1e-1,reltol=1e-1); plot(sol)
Let's go back to the multiscale embyro model:
<3 Julia
Up until now, I have shown how to solve many different equations and encode a wide variety of models to simulate using the various solvers in DifferentialEquations.jl. But because all of this uses a single interface, an addon suite was able to be developed.
Many times you need to solve the same equation multiple times. This is especially true for stochastic simulations.
pf = function (du,u,p,t)
du[1] = p[1] * u[1] - p[2] * u[1]*u[2]
du[2] = -3 * u[2] + u[1]*u[2]
end
pf = ParameterizedFunction(pf_func,)
pg = function (du,u,p,t)
du[1] = p[3]*u[1]
du[2] = p[4]*u[2]
end
p = [1.5,1.0,0.1,0.1]
prob = SDEProblem(pf,pg,[1.0,1.0],(0.0,10.0),p)
prob_func = function (prob,i)
problem_new_parameters(prob,[1.5,1.0,0.3rand(),0.3rand()])
prob
end
monte_prob = MonteCarloProblem(prob,prob_func=prob_func)
sim = solve(monte_prob,SRIW1(),num_monte=10);
plot(sim,linealpha=0.6,color=:blue,vars=(0,1),title="The Timeseries'")
plot!(sim,linealpha=0.6,color=:red,vars=(0,2))
summ = MonteCarloSummary(sim,0:0.1:10)
gr() # Note that plotly does not support ribbon plots
plot(summ,fillalpha=0.4)
Estimate the uncertainty in the solution due to numerical error
fitz = @ode_def FitzhughNagumo begin
dV = c*(V - V^3/3 + R)
dR = -(1/c)*(V - a - b*R)
end a b c
p = [0.2,0.2,3.0]
u0 = [-1.0;1.0]
tspan = (0.0,20.0)
prob = ODEProblem(fitz,u0,tspan,p)
cb = AdaptiveProbIntsUncertainty(5)
monte_prob = MonteCarloProblem(prob);
sim = solve(monte_prob,Tsit5(),num_monte=100,
callback=cb,abstol=1e-3,reltol=1e-1);
using Plots; gr(); plot(sim,vars=(0,1),linealpha=0.4)
sim = solve(monte_prob,Tsit5(),num_monte=100,
callback=cb,abstol=1e-6,reltol=1e-3)
plot(sim,vars=(0,1),linealpha=0.4)
Instead of simply solving differential equation models, one can ask the inverse problem: given that I see data like y
, what needs to be true about the model such that we can match the data?
The act of estimating the parameters for a mechanistic differential equation model is called parameter estimation.
Thus DifferentialEquations.jl is well-suited for handling these kinds of problems.
using DifferentialEquations, Plots; gr()
lotka = @ode_def_nohes LotkaVolterraTest begin
dx = a*x - b*x*y
dy = -c*y + d*x*y
end a b c d
p = [1.5,1.0,3.0,1.0]
u0 = [1.0;1.0]; tspan = (0.0,10.0);
prob = ODEProblem(lotka,u0,tspan,p)
sol = solve(prob,Vern8(),abstol=1e-14,reltol=1e-14);
t = collect(linspace(0,10,200))
randomized = [(sol(t[i]) + .01randn(2)) for i in 1:length(t)]
using RecursiveArrayTools;
data = vecvec_to_mat(randomized);
plot(sol,plotdensity=1000); scatter!(t,data)
This objective function has dispatches to work with all of the common optimization packages in Julia (JuMP/MathProgBase, Optim, BlackBoxOptim, ...)
obj = build_loss_objective(prob,Tsit5(),CostVData(t,data),maxiters=10000,verbose=true)
(::DiffEqObjective) (generic function with 2 methods)
Let's recover the parameters using the NLopt.jl package
import NLopt
opt = NLopt.Opt(:LN_BOBYQA, 4)
NLopt.lower_bounds!(opt,zeros(4))
NLopt.upper_bounds!(opt,5ones(4))
NLopt.min_objective!(opt, obj)
NLopt.maxeval!(opt, Int(1e5))
(minf,minx,ret) = NLopt.optimize(opt,ones(4))
(0.004039644894588035,[1.5,0.999476,2.99947,0.99869],:ROUNDOFF_LIMITED)
The next focus for DifferentialEquations.jl development is PDEs and stiff problems
Other areas which are under development are:
I am deeply indebted to every JuliaDiffEq contributor. I would like to especially thank: