#!/usr/bin/env python # coding: utf-8 # # QuTiP example: Pseudo-probability functions # J.R. Johansson and P.D. Nation # # For more information about QuTiP see [http://qutip.org](http://qutip.org) # In[20]: get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib.pylab as plt import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm # In[21]: import numpy as np # In[22]: from qutip import * # ## Wigner function for superposition of fock states # In[23]: x = 1.0 / np.sqrt(2) * (basis(10, 4) + basis(10, 2)) xvec = np.arange(-5, 5, 10.0 / 100) yvec = xvec W = wigner(x, xvec, yvec) cmap = wigner_cmap(W) X, Y = np.meshgrid(xvec, yvec) # In[24]: fig = plt.figure(figsize=(8,6)) plt.contourf(X, Y, W, 50, cmap=cmap) plt.colorbar(); # In[25]: fig = plt.figure(figsize=(10,8)) ax = Axes3D(fig, azim=-30, elev=73) ax.plot_surface(X, Y, W, cmap=cmap, rstride=1, cstride=1, alpha=1, linewidth=0) ax.set_zlim3d(-0.25, 0.25) for a in ax.w_zaxis.get_ticklines() + ax.w_zaxis.get_ticklabels(): a.set_visible(False) nrm = mpl.colors.Normalize(W.min(), W.max()) cax, kw = mpl.colorbar.make_axes(ax, shrink=.66, pad=.02) cb1 = mpl.colorbar.ColorbarBase(cax, cmap=cmap, norm=nrm) cb1.set_label('Pseudoprobability') # ## Winger and Q-function for squeezed states # In[26]: N = 20 alpha = -1.0 # Coherent amplitude of field epsilon = 0.5j # Squeezing parameter a = destroy(N) D = (alpha * a.dag() - np.conj(alpha) * a).expm() # Displacement S = (0.5 * np.conj(epsilon) * a * a - 0.5 * epsilon * a.dag() * a.dag()).expm() # Squeezing psi = D * S * basis(N, 0) # Apply to vacuum state g = 2 # ### Wigner function # In[27]: xvec = np.arange(-40.,40.)*5./40 X,Y = np.meshgrid(xvec, xvec) W = wigner(psi, xvec, xvec) fig1 = plt.figure(figsize=(8,6)) ax = Axes3D(fig1) ax.plot_surface(X, Y, W, rstride=2, cstride=2, cmap=cm.jet, alpha=0.7) ax.contour(X, Y, W, 15,zdir='x', offset=-6) ax.contour(X, Y, W, 15,zdir='y', offset=6) ax.contour(X, Y, W, 15,zdir='z', offset=-0.3) ax.set_xlim3d(-6,6) ax.set_xlim3d(-6,6) ax.set_zlim3d(-0.3,0.4) plt.title('Wigner function of squeezed state'); # ### Q-function # In[28]: Q = qfunc(psi, xvec, xvec, g); fig2 = plt.figure(figsize=(8,6)) ax = Axes3D(fig2) ax.plot_surface(X, Y, Q, rstride=2, cstride=2, cmap=cm.jet, alpha=0.7) ax.contour(X, Y, Q,zdir='x', offset=-6) ax.contour(X, Y, Q,zdir='y', offset=6) ax.contour(X, Y, Q, 15,zdir='z', offset=-0.4) ax.set_xlim3d(-6,6) ax.set_xlim3d(-6,6) ax.set_zlim3d(-0.3,0.4) plt.title('Q function of squeezed state'); # ## Schrodinger cat state # In[29]: N = 20; #amplitudes of coherent states alpha1=-2.0-2j alpha2=2.0+2j #define ladder oeprators a = destroy(N); #define displacement oeprators D1=(alpha1*dag(a)-np.conj(alpha1)*a).expm() D2=(alpha2*dag(a)-np.conj(alpha2)*a).expm() #sum of coherent states psi = np.sqrt(2)**-1*(D1+D2)*basis(N,0); # Apply to vacuum state # In[30]: #calculate Wigner function yvec = xvec = np.arange(-100.,100.)*5./100 g=2. W = wigner(psi, xvec, yvec) fig = plt.figure(figsize=(8,6)) c = plt.contourf(xvec, yvec, np.real(W), 100) plt.xlim([-5,5]) plt.ylim([-5,5]) plt.title('Wigner function of Schrodinger cat') cbar = plt.colorbar(c) cbar.ax.set_ylabel('Pseudoprobability'); # In[31]: #calculate Q function Q = qfunc(psi,xvec,yvec) fig = plt.figure(figsize=(8,6)) qplt = plt.contourf(xvec, yvec, np.real(Q), 100) plt.xlim([-5,5]) plt.ylim([-5,5]) plt.title('Q function of Schrodinger cat') cbar = plt.colorbar(qplt) cbar.ax.set_ylabel('Probability'); # ## Software version: # In[32]: from qutip.ipynbtools import version_table version_table() # In[ ]: