#!/usr/bin/env python # coding: utf-8 # # 各种绘图实例 # ## 简单绘图 # `plot` 函数: # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') import numpy as np import matplotlib.pyplot as plt t = np.arange(0.0, 2.0, 0.01) s = np.sin(2*np.pi*t) plt.plot(t, s) plt.xlabel('time (s)') plt.ylabel('voltage (mV)') plt.title('About as simple as it gets, folks') plt.grid(True) plt.show() # ## 子图 # `subplot` 函数: # In[2]: import numpy as np import matplotlib.mlab as mlab x1 = np.linspace(0.0, 5.0) x2 = np.linspace(0.0, 2.0) y1 = np.cos(2 * np.pi * x1) * np.exp(-x1) y2 = np.cos(2 * np.pi * x2) plt.subplot(2, 1, 1) plt.plot(x1, y1, 'yo-') plt.title('A tale of 2 subplots') plt.ylabel('Damped oscillation') plt.subplot(2, 1, 2) plt.plot(x2, y2, 'r.-') plt.xlabel('time (s)') plt.ylabel('Undamped') plt.show() # ## 直方图 # `hist` 函数: # In[3]: import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt # example data mu = 100 # mean of distribution sigma = 15 # standard deviation of distribution x = mu + sigma * np.random.randn(10000) num_bins = 50 # the histogram of the data n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='green', alpha=0.5) # add a 'best fit' line y = mlab.normpdf(bins, mu, sigma) plt.plot(bins, y, 'r--') plt.xlabel('Smarts') plt.ylabel('Probability') plt.title(r'Histogram of IQ: $\mu=100$, $\sigma=15$') # Tweak spacing to prevent clipping of ylabel plt.subplots_adjust(left=0.15) plt.show() # ## 路径图 # `matplotlib.path` 包: # In[4]: import matplotlib.path as mpath import matplotlib.patches as mpatches import matplotlib.pyplot as plt fig, ax = plt.subplots() Path = mpath.Path path_data = [ (Path.MOVETO, (1.58, -2.57)), (Path.CURVE4, (0.35, -1.1)), (Path.CURVE4, (-1.75, 2.0)), (Path.CURVE4, (0.375, 2.0)), (Path.LINETO, (0.85, 1.15)), (Path.CURVE4, (2.2, 3.2)), (Path.CURVE4, (3, 0.05)), (Path.CURVE4, (2.0, -0.5)), (Path.CLOSEPOLY, (1.58, -2.57)), ] codes, verts = zip(*path_data) path = mpath.Path(verts, codes) patch = mpatches.PathPatch(path, facecolor='r', alpha=0.5) ax.add_patch(patch) # plot control points and connecting lines x, y = zip(*path.vertices) line, = ax.plot(x, y, 'go-') ax.grid() ax.axis('equal') plt.show() # ## 三维绘图 # 导入 `Axex3D`: # In[5]: from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import matplotlib.pyplot as plt import numpy as np fig = plt.figure() ax = fig.gca(projection='3d') X = np.arange(-5, 5, 0.25) Y = np.arange(-5, 5, 0.25) X, Y = np.meshgrid(X, Y) R = np.sqrt(X**2 + Y**2) Z = np.sin(R) surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) ax.set_zlim(-1.01, 1.01) ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() # ## 流向图 # 主要函数:`plt.streamplot` # In[6]: import numpy as np import matplotlib.pyplot as plt Y, X = np.mgrid[-3:3:100j, -3:3:100j] U = -1 - X**2 + Y V = 1 + X - Y**2 speed = np.sqrt(U*U + V*V) plt.streamplot(X, Y, U, V, color=U, linewidth=2, cmap=plt.cm.autumn) plt.colorbar() f, (ax1, ax2) = plt.subplots(ncols=2) ax1.streamplot(X, Y, U, V, density=[0.5, 1]) lw = 5*speed/speed.max() ax2.streamplot(X, Y, U, V, density=0.6, color='k', linewidth=lw) plt.show() # ## 椭圆 # `Ellipse` 对象: # In[7]: from pylab import figure, show, rand from matplotlib.patches import Ellipse NUM = 250 ells = [Ellipse(xy=rand(2)*10, width=rand(), height=rand(), angle=rand()*360) for i in range(NUM)] fig = figure() ax = fig.add_subplot(111, aspect='equal') for e in ells: ax.add_artist(e) e.set_clip_box(ax.bbox) e.set_alpha(rand()) e.set_facecolor(rand(3)) ax.set_xlim(0, 10) ax.set_ylim(0, 10) show() # ## 条状图 # `bar` 函数: # In[8]: import numpy as np import matplotlib.pyplot as plt n_groups = 5 means_men = (20, 35, 30, 35, 27) std_men = (2, 3, 4, 1, 2) means_women = (25, 32, 34, 20, 25) std_women = (3, 5, 2, 3, 3) fig, ax = plt.subplots() index = np.arange(n_groups) bar_width = 0.35 opacity = 0.4 error_config = {'ecolor': '0.3'} rects1 = plt.bar(index, means_men, bar_width, alpha=opacity, color='b', yerr=std_men, error_kw=error_config, label='Men') rects2 = plt.bar(index + bar_width, means_women, bar_width, alpha=opacity, color='r', yerr=std_women, error_kw=error_config, label='Women') plt.xlabel('Group') plt.ylabel('Scores') plt.title('Scores by group and gender') plt.xticks(index + bar_width, ('A', 'B', 'C', 'D', 'E')) plt.legend() plt.tight_layout() plt.show() # ## 饼状图 # `pie` 函数: # In[9]: import matplotlib.pyplot as plt # The slices will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') plt.show() # ## 图像中的表格 # `table` 函数: # In[10]: import numpy as np import matplotlib.pyplot as plt data = [[ 66386, 174296, 75131, 577908, 32015], [ 58230, 381139, 78045, 99308, 160454], [ 89135, 80552, 152558, 497981, 603535], [ 78415, 81858, 150656, 193263, 69638], [ 139361, 331509, 343164, 781380, 52269]] columns = ('Freeze', 'Wind', 'Flood', 'Quake', 'Hail') rows = ['%d year' % x for x in (100, 50, 20, 10, 5)] values = np.arange(0, 2500, 500) value_increment = 1000 # Get some pastel shades for the colors colors = plt.cm.BuPu(np.linspace(0, 0.5, len(columns))) n_rows = len(data) index = np.arange(len(columns)) + 0.3 bar_width = 0.4 # Initialize the vertical-offset for the stacked bar chart. y_offset = np.array([0.0] * len(columns)) # Plot bars and create text labels for the table cell_text = [] for row in range(n_rows): plt.bar(index, data[row], bar_width, bottom=y_offset, color=colors[row]) y_offset = y_offset + data[row] cell_text.append(['%1.1f' % (x/1000.0) for x in y_offset]) # Reverse colors and text labels to display the last value at the top. colors = colors[::-1] cell_text.reverse() # Add a table at the bottom of the axes the_table = plt.table(cellText=cell_text, rowLabels=rows, rowColours=colors, colLabels=columns, loc='bottom') # Adjust layout to make room for the table: plt.subplots_adjust(left=0.2, bottom=0.2) plt.ylabel("Loss in ${0}'s".format(value_increment)) plt.yticks(values * value_increment, ['%d' % val for val in values]) plt.xticks([]) plt.title('Loss by Disaster') plt.show() # ## 散点图 # `scatter` 函数: # In[11]: import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, # open, close, volume, adj_close from the mpl-data/example directory. # The record array stores python datetime.date as an object array in # the date column datafile = cbook.get_sample_data('goog.npy') price_data = np.load(datafile).view(np.recarray) price_data = price_data[-250:] # get the most recent 250 trading days delta1 = np.diff(price_data.adj_close)/price_data.adj_close[:-1] # Marker size in units of points^2 volume = (15 * price_data.volume[:-2] / price_data.volume[0])**2 close = 0.003 * price_data.close[:-2] / 0.003 * price_data.open[:-2] fig, ax = plt.subplots() ax.scatter(delta1[:-1], delta1[1:], c=close, s=volume, alpha=0.5) ax.set_xlabel(r'$\Delta_i$', fontsize=20) ax.set_ylabel(r'$\Delta_{i+1}$', fontsize=20) ax.set_title('Volume and percent change') ax.grid(True) fig.tight_layout() plt.show() # ## 设置按钮 # `matplotlib.widgets` 模块: # In[12]: import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button, RadioButtons fig, ax = plt.subplots() plt.subplots_adjust(left=0.25, bottom=0.25) t = np.arange(0.0, 1.0, 0.001) a0 = 5 f0 = 3 s = a0*np.sin(2*np.pi*f0*t) l, = plt.plot(t,s, lw=2, color='red') plt.axis([0, 1, -10, 10]) axcolor = 'lightgoldenrodyellow' axfreq = plt.axes([0.25, 0.1, 0.65, 0.03], axisbg=axcolor) axamp = plt.axes([0.25, 0.15, 0.65, 0.03], axisbg=axcolor) sfreq = Slider(axfreq, 'Freq', 0.1, 30.0, valinit=f0) samp = Slider(axamp, 'Amp', 0.1, 10.0, valinit=a0) def update(val): amp = samp.val freq = sfreq.val l.set_ydata(amp*np.sin(2*np.pi*freq*t)) fig.canvas.draw_idle() sfreq.on_changed(update) samp.on_changed(update) resetax = plt.axes([0.8, 0.025, 0.1, 0.04]) button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975') def reset(event): sfreq.reset() samp.reset() button.on_clicked(reset) rax = plt.axes([0.025, 0.5, 0.15, 0.15], axisbg=axcolor) radio = RadioButtons(rax, ('red', 'blue', 'green'), active=0) def colorfunc(label): l.set_color(label) fig.canvas.draw_idle() radio.on_clicked(colorfunc) plt.show() # ## 填充曲线 # `fill` 函数: # In[13]: import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 1) y = np.sin(4 * np.pi * x) * np.exp(-5 * x) plt.fill(x, y, 'r') plt.grid(True) plt.show() # ## 时间刻度 # In[14]: """ Show how to make date plots in matplotlib using date tick locators and formatters. See major_minor_demo1.py for more information on controlling major and minor ticks All matplotlib date plotting is done by converting date instances into days since the 0001-01-01 UTC. The conversion, tick locating and formatting is done behind the scenes so this is most transparent to you. The dates module provides several converter functions date2num and num2date """ import datetime import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.cbook as cbook years = mdates.YearLocator() # every year months = mdates.MonthLocator() # every month yearsFmt = mdates.DateFormatter('%Y') # load a numpy record array from yahoo csv data with fields date, # open, close, volume, adj_close from the mpl-data/example directory. # The record array stores python datetime.date as an object array in # the date column datafile = cbook.get_sample_data('goog.npy') r = np.load(datafile).view(np.recarray) fig, ax = plt.subplots() ax.plot(r.date, r.adj_close) # format the ticks ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(yearsFmt) ax.xaxis.set_minor_locator(months) datemin = datetime.date(r.date.min().year, 1, 1) datemax = datetime.date(r.date.max().year+1, 1, 1) ax.set_xlim(datemin, datemax) # format the coords message box def price(x): return '$%1.2f'%x ax.format_xdata = mdates.DateFormatter('%Y-%m-%d') ax.format_ydata = price ax.grid(True) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() plt.show() # ## 金融数据 # In[15]: import datetime import numpy as np import matplotlib.colors as colors import matplotlib.finance as finance import matplotlib.dates as mdates import matplotlib.ticker as mticker import matplotlib.mlab as mlab import matplotlib.pyplot as plt import matplotlib.font_manager as font_manager startdate = datetime.date(2006,1,1) today = enddate = datetime.date.today() ticker = 'SPY' fh = finance.fetch_historical_yahoo(ticker, startdate, enddate) # a numpy record array with fields: date, open, high, low, close, volume, adj_close) r = mlab.csv2rec(fh); fh.close() r.sort() def moving_average(x, n, type='simple'): """ compute an n period moving average. type is 'simple' | 'exponential' """ x = np.asarray(x) if type=='simple': weights = np.ones(n) else: weights = np.exp(np.linspace(-1., 0., n)) weights /= weights.sum() a = np.convolve(x, weights, mode='full')[:len(x)] a[:n] = a[n] return a def relative_strength(prices, n=14): """ compute the n period relative strength indicator http://stockcharts.com/school/doku.php?id=chart_school:glossary_r#relativestrengthindex http://www.investopedia.com/terms/r/rsi.asp """ deltas = np.diff(prices) seed = deltas[:n+1] up = seed[seed>=0].sum()/n down = -seed[seed<0].sum()/n rs = up/down rsi = np.zeros_like(prices) rsi[:n] = 100. - 100./(1.+rs) for i in range(n, len(prices)): delta = deltas[i-1] # cause the diff is 1 shorter if delta>0: upval = delta downval = 0. else: upval = 0. downval = -delta up = (up*(n-1) + upval)/n down = (down*(n-1) + downval)/n rs = up/down rsi[i] = 100. - 100./(1.+rs) return rsi def moving_average_convergence(x, nslow=26, nfast=12): """ compute the MACD (Moving Average Convergence/Divergence) using a fast and slow exponential moving avg' return value is emaslow, emafast, macd which are len(x) arrays """ emaslow = moving_average(x, nslow, type='exponential') emafast = moving_average(x, nfast, type='exponential') return emaslow, emafast, emafast - emaslow plt.rc('axes', grid=True) plt.rc('grid', color='0.75', linestyle='-', linewidth=0.5) textsize = 9 left, width = 0.1, 0.8 rect1 = [left, 0.7, width, 0.2] rect2 = [left, 0.3, width, 0.4] rect3 = [left, 0.1, width, 0.2] fig = plt.figure(facecolor='white') axescolor = '#f6f6f6' # the axes background color ax1 = fig.add_axes(rect1, axisbg=axescolor) #left, bottom, width, height ax2 = fig.add_axes(rect2, axisbg=axescolor, sharex=ax1) ax2t = ax2.twinx() ax3 = fig.add_axes(rect3, axisbg=axescolor, sharex=ax1) ### plot the relative strength indicator prices = r.adj_close rsi = relative_strength(prices) fillcolor = 'darkgoldenrod' ax1.plot(r.date, rsi, color=fillcolor) ax1.axhline(70, color=fillcolor) ax1.axhline(30, color=fillcolor) ax1.fill_between(r.date, rsi, 70, where=(rsi>=70), facecolor=fillcolor, edgecolor=fillcolor) ax1.fill_between(r.date, rsi, 30, where=(rsi<=30), facecolor=fillcolor, edgecolor=fillcolor) ax1.text(0.6, 0.9, '>70 = overbought', va='top', transform=ax1.transAxes, fontsize=textsize) ax1.text(0.6, 0.1, '<30 = oversold', transform=ax1.transAxes, fontsize=textsize) ax1.set_ylim(0, 100) ax1.set_yticks([30,70]) ax1.text(0.025, 0.95, 'RSI (14)', va='top', transform=ax1.transAxes, fontsize=textsize) ax1.set_title('%s daily'%ticker) ### plot the price and volume data dx = r.adj_close - r.close low = r.low + dx high = r.high + dx deltas = np.zeros_like(prices) deltas[1:] = np.diff(prices) up = deltas>0 ax2.vlines(r.date[up], low[up], high[up], color='black', label='_nolegend_') ax2.vlines(r.date[~up], low[~up], high[~up], color='black', label='_nolegend_') ma20 = moving_average(prices, 20, type='simple') ma200 = moving_average(prices, 200, type='simple') linema20, = ax2.plot(r.date, ma20, color='blue', lw=2, label='MA (20)') linema200, = ax2.plot(r.date, ma200, color='red', lw=2, label='MA (200)') last = r[-1] s = '%s O:%1.2f H:%1.2f L:%1.2f C:%1.2f, V:%1.1fM Chg:%+1.2f' % ( today.strftime('%d-%b-%Y'), last.open, last.high, last.low, last.close, last.volume*1e-6, last.close-last.open ) t4 = ax2.text(0.3, 0.9, s, transform=ax2.transAxes, fontsize=textsize) props = font_manager.FontProperties(size=10) leg = ax2.legend(loc='center left', shadow=True, fancybox=True, prop=props) leg.get_frame().set_alpha(0.5) volume = (r.close*r.volume)/1e6 # dollar volume in millions vmax = volume.max() poly = ax2t.fill_between(r.date, volume, 0, label='Volume', facecolor=fillcolor, edgecolor=fillcolor) ax2t.set_ylim(0, 5*vmax) ax2t.set_yticks([]) ### compute the MACD indicator fillcolor = 'darkslategrey' nslow = 26 nfast = 12 nema = 9 emaslow, emafast, macd = moving_average_convergence(prices, nslow=nslow, nfast=nfast) ema9 = moving_average(macd, nema, type='exponential') ax3.plot(r.date, macd, color='black', lw=2) ax3.plot(r.date, ema9, color='blue', lw=1) ax3.fill_between(r.date, macd-ema9, 0, alpha=0.5, facecolor=fillcolor, edgecolor=fillcolor) ax3.text(0.025, 0.95, 'MACD (%d, %d, %d)'%(nfast, nslow, nema), va='top', transform=ax3.transAxes, fontsize=textsize) #ax3.set_yticks([]) # turn off upper axis tick labels, rotate the lower ones, etc for ax in ax1, ax2, ax2t, ax3: if ax!=ax3: for label in ax.get_xticklabels(): label.set_visible(False) else: for label in ax.get_xticklabels(): label.set_rotation(30) label.set_horizontalalignment('right') ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d') class MyLocator(mticker.MaxNLocator): def __init__(self, *args, **kwargs): mticker.MaxNLocator.__init__(self, *args, **kwargs) def __call__(self, *args, **kwargs): return mticker.MaxNLocator.__call__(self, *args, **kwargs) # at most 5 ticks, pruning the upper and lower so they don't overlap # with other ticks #ax2.yaxis.set_major_locator(mticker.MaxNLocator(5, prune='both')) #ax3.yaxis.set_major_locator(mticker.MaxNLocator(5, prune='both')) ax2.yaxis.set_major_locator(MyLocator(5, prune='both')) ax3.yaxis.set_major_locator(MyLocator(5, prune='both')) plt.show() # ## basemap 画地图 # 需要安装 `basemap` 包: # In[16]: import matplotlib.pyplot as plt import numpy as np try: from mpl_toolkits.basemap import Basemap have_basemap = True except ImportError: have_basemap = False def plotmap(): # create figure fig = plt.figure(figsize=(8,8)) # set up orthographic map projection with # perspective of satellite looking down at 50N, 100W. # use low resolution coastlines. map = Basemap(projection='ortho',lat_0=50,lon_0=-100,resolution='l') # lat/lon coordinates of five cities. lats=[40.02,32.73,38.55,48.25,17.29] lons=[-105.16,-117.16,-77.00,-114.21,-88.10] cities=['Boulder, CO','San Diego, CA', 'Washington, DC','Whitefish, MT','Belize City, Belize'] # compute the native map projection coordinates for cities. xc,yc = map(lons,lats) # make up some data on a regular lat/lon grid. nlats = 73; nlons = 145; delta = 2.*np.pi/(nlons-1) lats = (0.5*np.pi-delta*np.indices((nlats,nlons))[0,:,:]) lons = (delta*np.indices((nlats,nlons))[1,:,:]) wave = 0.75*(np.sin(2.*lats)**8*np.cos(4.*lons)) mean = 0.5*np.cos(2.*lats)*((np.sin(2.*lats))**2 + 2.) # compute native map projection coordinates of lat/lon grid. # (convert lons and lats to degrees first) x, y = map(lons*180./np.pi, lats*180./np.pi) # draw map boundary map.drawmapboundary(color="0.9") # draw graticule (latitude and longitude grid lines) map.drawmeridians(np.arange(0,360,30),color="0.9") map.drawparallels(np.arange(-90,90,30),color="0.9") # plot filled circles at the locations of the cities. map.plot(xc,yc,'wo') # plot the names of five cities. for name,xpt,ypt in zip(cities,xc,yc): plt.text(xpt+100000,ypt+100000,name,fontsize=9,color='w') # contour data over the map. cs = map.contour(x,y,wave+mean,15,linewidths=1.5) # draw blue marble image in background. # (downsample the image by 50% for speed) map.bluemarble(scale=0.5) def plotempty(): # create figure fig = plt.figure(figsize=(8,8)) fig.text(0.5, 0.5, "Sorry, could not import Basemap", horizontalalignment='center') if have_basemap: plotmap() else: plotempty() plt.show() # ## 对数图 # `loglog, semilogx, semilogy, errorbar` 函数: # In[17]: import numpy as np import matplotlib.pyplot as plt plt.subplots_adjust(hspace=0.4) t = np.arange(0.01, 20.0, 0.01) # log y axis plt.subplot(221) plt.semilogy(t, np.exp(-t/5.0)) plt.title('semilogy') plt.grid(True) # log x axis plt.subplot(222) plt.semilogx(t, np.sin(2*np.pi*t)) plt.title('semilogx') plt.grid(True) # log x and y axis plt.subplot(223) plt.loglog(t, 20*np.exp(-t/10.0), basex=2) plt.grid(True) plt.title('loglog base 4 on x') # with errorbars: clip non-positive values ax = plt.subplot(224) ax.set_xscale("log", nonposx='clip') ax.set_yscale("log", nonposy='clip') x = 10.0**np.linspace(0.0, 2.0, 20) y = x**2.0 plt.errorbar(x, y, xerr=0.1*x, yerr=5.0+0.75*y) ax.set_ylim(ymin=0.1) ax.set_title('Errorbars go negative') plt.show() # ## 极坐标 # 设置 `polar=True`: # In[18]: import numpy as np import matplotlib.pyplot as plt r = np.arange(0, 3.0, 0.01) theta = 2 * np.pi * r ax = plt.subplot(111, polar=True) ax.plot(theta, r, color='r', linewidth=3) ax.set_rmax(2.0) ax.grid(True) ax.set_title("A line plot on a polar axis", va='bottom') plt.show() # ## 标注 # `legend` 函数: # In[19]: import numpy as np import matplotlib.pyplot as plt # Make some fake data. a = b = np.arange(0,3, .02) c = np.exp(a) d = c[::-1] # Create plots with pre-defined labels. plt.plot(a, c, 'k--', label='Model length') plt.plot(a, d, 'k:', label='Data length') plt.plot(a, c+d, 'k', label='Total message length') legend = plt.legend(loc='upper center', shadow=True, fontsize='x-large') # Put a nicer background color on the legend. legend.get_frame().set_facecolor('#00FFCC') plt.show() # ## 数学公式 # In[20]: from __future__ import print_function import matplotlib.pyplot as plt import os import sys import re import gc # Selection of features following "Writing mathematical expressions" tutorial mathtext_titles = { 0: "Header demo", 1: "Subscripts and superscripts", 2: "Fractions, binomials and stacked numbers", 3: "Radicals", 4: "Fonts", 5: "Accents", 6: "Greek, Hebrew", 7: "Delimiters, functions and Symbols"} n_lines = len(mathtext_titles) # Randomly picked examples mathext_demos = { 0: r"$W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = " r"U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2} " r"\int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ " r"U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_" r"{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$", 1: r"$\alpha_i > \beta_i,\ " r"\alpha_{i+1}^j = {\rm sin}(2\pi f_j t_i) e^{-5 t_i/\tau},\ " r"\ldots$", 2: r"$\frac{3}{4},\ \binom{3}{4},\ \stackrel{3}{4},\ " r"\left(\frac{5 - \frac{1}{x}}{4}\right),\ \ldots$", 3: r"$\sqrt{2},\ \sqrt[3]{x},\ \ldots$", 4: r"$\mathrm{Roman}\ , \ \mathit{Italic}\ , \ \mathtt{Typewriter} \ " r"\mathrm{or}\ \mathcal{CALLIGRAPHY}$", 5: r"$\acute a,\ \bar a,\ \breve a,\ \dot a,\ \ddot a, \ \grave a, \ " r"\hat a,\ \tilde a,\ \vec a,\ \widehat{xyz},\ \widetilde{xyz},\ " r"\ldots$", 6: r"$\alpha,\ \beta,\ \chi,\ \delta,\ \lambda,\ \mu,\ " r"\Delta,\ \Gamma,\ \Omega,\ \Phi,\ \Pi,\ \Upsilon,\ \nabla,\ " r"\aleph,\ \beth,\ \daleth,\ \gimel,\ \ldots$", 7: r"$\coprod,\ \int,\ \oint,\ \prod,\ \sum,\ " r"\log,\ \sin,\ \approx,\ \oplus,\ \star,\ \varpropto,\ " r"\infty,\ \partial,\ \Re,\ \leftrightsquigarrow, \ \ldots$"} def doall(): # Colors used in mpl online documentation. mpl_blue_rvb = (191./255., 209./256., 212./255.) mpl_orange_rvb = (202/255., 121/256., 0./255.) mpl_grey_rvb = (51./255., 51./255., 51./255.) # Creating figure and axis. plt.figure(figsize=(6, 7)) plt.axes([0.01, 0.01, 0.98, 0.90], axisbg="white", frameon=True) plt.gca().set_xlim(0., 1.) plt.gca().set_ylim(0., 1.) plt.gca().set_title("Matplotlib's math rendering engine", color=mpl_grey_rvb, fontsize=14, weight='bold') plt.gca().set_xticklabels("", visible=False) plt.gca().set_yticklabels("", visible=False) # Gap between lines in axes coords line_axesfrac = (1. / (n_lines)) # Plotting header demonstration formula full_demo = mathext_demos[0] plt.annotate(full_demo, xy=(0.5, 1. - 0.59*line_axesfrac), xycoords='data', color=mpl_orange_rvb, ha='center', fontsize=20) # Plotting features demonstration formulae for i_line in range(1, n_lines): baseline = 1. - (i_line)*line_axesfrac baseline_next = baseline - line_axesfrac*1. title = mathtext_titles[i_line] + ":" fill_color = ['white', mpl_blue_rvb][i_line % 2] plt.fill_between([0., 1.], [baseline, baseline], [baseline_next, baseline_next], color=fill_color, alpha=0.5) plt.annotate(title, xy=(0.07, baseline - 0.3*line_axesfrac), xycoords='data', color=mpl_grey_rvb, weight='bold') demo = mathext_demos[i_line] plt.annotate(demo, xy=(0.05, baseline - 0.75*line_axesfrac), xycoords='data', color=mpl_grey_rvb, fontsize=16) for i in range(n_lines): s = mathext_demos[i] print(i, s) plt.show() if '--latex' in sys.argv: # Run: python mathtext_examples.py --latex # Need amsmath and amssymb packages. fd = open("mathtext_examples.ltx", "w") fd.write("\\documentclass{article}\n") fd.write("\\usepackage{amsmath, amssymb}\n") fd.write("\\begin{document}\n") fd.write("\\begin{enumerate}\n") for i in range(n_lines): s = mathext_demos[i] s = re.sub(r"(?