#!/usr/bin/env python # coding: utf-8 # # *This notebook contains material from [Controlling Natural Watersheds](https://jckantor.github.io/Controlling-Natural-Watersheds); # content is available [on Github](https://github.com/jckantor/Controlling-Natural-Watersheds.git).* # # < [Projects](http://nbviewer.jupyter.org/github/jckantor/Controlling-Natural-Watersheds/blob/master/notebooks/B.00-Projects.ipynb) | [Contents](toc.ipynb) | [Dashboard](http://nbviewer.jupyter.org/github/jckantor/Controlling-Natural-Watersheds/blob/master/notebooks/B.02-Dashboard.ipynb) >

Open in Colab

Download # # Solar Cycle # In[18]: get_ipython().run_line_magic('matplotlib', 'inline') # ARMA example using sunpots data import numpy as np from scipy import stats import pandas import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.graphics.api import qqplot # In[17]: print(sm.datasets.sunspots.NOTE) dta = sm.datasets.sunspots.load_pandas().data dta.index = pandas.Index(sm.tsa.datetools.dates_from_range('1700', '2008')) del dta["YEAR"] dta.plot(figsize=(12,8)); # In[16]: fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(211) fig = sm.graphics.tsa.plot_acf(dta.values.squeeze(), lags=40, ax=ax1) ax2 = fig.add_subplot(212) fig = sm.graphics.tsa.plot_pacf(dta, lags=40, ax=ax2) # In[8]: # arma_mod20 = sm.tsa.ARMA(dta, (2,0)).fit() print(arma_mod20.params) print(arma_mod20.aic, arma_mod20.bic, arma_mod20.hqic) # In[9]: # arma_mod30 = sm.tsa.ARMA(dta, (3,0)).fit() # print(arma_mod30.params) # print(arma_mod30.aic, arma_mod30.bic, arma_mod30.hqic) # In[12]: # # * Does our model obey the theory? # sm.stats.durbin_watson(arma_mod30.resid.values) # fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) ax = arma_mod30.resid.plot(ax=ax); # In[13]: resid = arma_mod30.resid stats.normaltest(resid) # In[11]: # fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) fig = qqplot(resid, line='q', ax=ax, fit=True) # fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(211) fig = sm.graphics.tsa.plot_acf(resid.values.squeeze(), lags=40, ax=ax1) ax2 = fig.add_subplot(212) fig = sm.graphics.tsa.plot_pacf(resid, lags=40, ax=ax2) # In[10]: # r,q,p = sm.tsa.acf(resid.values.squeeze(), qstat=True) data = np.c_[range(1,41), r[1:], q, p] table = pandas.DataFrame(data, columns=['lag', "AC", "Q", "Prob(>Q)"]) print(table.set_index('lag')) # In[3]: # # * This indicates a lack of fit. # # * In-sample dynamic prediction. How good does our model do? # predict_sunspots = arma_mod30.predict('1990', '2012', dynamic=True) print predict_sunspots # ax = dta.ix['1950':].plot(figsize=(12,8)) ax = predict_sunspots.plot(ax=ax, style='r--', label='Dynamic Prediction'); ax.legend(); ax.axis((-20.0, 38.0, -4.0, 200.0)); # def mean_forecast_err(y, yhat): return y.sub(yhat).mean() # mean_forecast_err(dta.SUNACTIVITY, predict_sunspots) # # Exercise: Can you obtain a better fit for the Sunspots model? (Hint: sm.tsa.AR has a method select_order) # # Simulated ARMA(4,1): Model Identification is Difficult # from statsmodels.tsa.arima_process import arma_generate_sample, ArmaProcess # np.random.seed(1234) # include zero-th lag arparams = np.array([1, .75, -.65, -.55, .9]) maparams = np.array([1, .65]) # # * Let's make sure this models is estimable. # arma_t = ArmaProcess(arparams, maparams) # arma_t.isinvertible() # arma_t.isstationary() # # * What does this mean? # fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) ax.plot(arma_t.generate_sample(size=50)); # arparams = np.array([1, .35, -.15, .55, .1]) maparams = np.array([1, .65]) arma_t = ArmaProcess(arparams, maparams) arma_t.isstationary() # arma_rvs = arma_t.generate_sample(size=500, burnin=250, scale=2.5) # fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(211) fig = sm.graphics.tsa.plot_acf(arma_rvs, lags=40, ax=ax1) ax2 = fig.add_subplot(212) fig = sm.graphics.tsa.plot_pacf(arma_rvs, lags=40, ax=ax2) # # * For mixed ARMA processes the Autocorrelation function is a mixture of exponentials and damped sine waves after (q-p) lags. # * The partial autocorrelation function is a mixture of exponentials and dampened sine waves after (p-q) lags. # arma11 = sm.tsa.ARMA(arma_rvs, (1,1)).fit() resid = arma11.resid r,q,p = sm.tsa.acf(resid, qstat=True) data = np.c_[range(1,41), r[1:], q, p] table = pandas.DataFrame(data, columns=['lag', "AC", "Q", "Prob(>Q)"]) print table.set_index('lag') # arma41 = sm.tsa.ARMA(arma_rvs, (4,1)).fit() resid = arma41.resid r,q,p = sm.tsa.acf(resid, qstat=True) data = np.c_[range(1,41), r[1:], q, p] table = pandas.DataFrame(data, columns=['lag', "AC", "Q", "Prob(>Q)"]) print table.set_index('lag') # # Exercise: How good of in-sample prediction can you do for another series, say, CPI # macrodta = sm.datasets.macrodata.load_pandas().data macrodta.index = pandas.Index(sm.tsa.datetools.dates_from_range('1959Q1', '2009Q3')) cpi = macrodta["cpi"] # # Hint: # fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) ax = cpi.plot(ax=ax); ax.legend(); # # P-value of the unit-root test, resoundly rejects the null of no unit-root. # print sm.tsa.adfuller(cpi)[1] Contact GitHub API Training Shop Blog About © 2017 GitHub, Inc. Terms Privacy Security Status Help # In[ ]: # # < [Projects](http://nbviewer.jupyter.org/github/jckantor/Controlling-Natural-Watersheds/blob/master/notebooks/B.00-Projects.ipynb) | [Contents](toc.ipynb) | [Dashboard](http://nbviewer.jupyter.org/github/jckantor/Controlling-Natural-Watersheds/blob/master/notebooks/B.02-Dashboard.ipynb) >

Open in Colab

Download