#!/usr/bin/env python # coding: utf-8 # # SymPy: Open Source Symbolic Mathematics # # This notebook uses the [SymPy](http://sympy.org) package to perform symbolic manipulations, # and combined with numpy and matplotlib, also displays numerical visualizations of symbolically # constructed expressions. # # We first load sympy printing extensions, as well as all of sympy: # In[1]: from IPython.display import display from sympy.interactive import printing printing.init_printing(use_latex='mathjax') from __future__ import division import sympy as sym from sympy import * x, y, z = symbols("x y z") k, m, n = symbols("k m n", integer=True) f, g, h = map(Function, 'fgh') #

Elementary operations

# In[2]: Rational(3,2)*pi + exp(I*x) / (x**2 + y) # In[3]: exp(I*x).subs(x,pi).evalf() # In[4]: e = x + 2*y # In[5]: srepr(e) # In[6]: exp(pi * sqrt(163)).evalf(50) #

Algebra

# In[7]: eq = ((x+y)**2 * (x+1)) eq # In[8]: expand(eq) # In[9]: a = 1/x + (x*sin(x) - 1)/x a # In[10]: simplify(a) # In[11]: eq = Eq(x**3 + 2*x**2 + 4*x + 8, 0) eq # In[12]: solve(eq, x) # In[13]: a, b = symbols('a b') Sum(6*n**2 + 2**n, (n, a, b)) #

Calculus

# In[14]: limit((sin(x)-x)/x**3, x, 0) # In[15]: (1/cos(x)).series(x, 0, 6) # In[16]: diff(cos(x**2)**2 / (1+x), x) # In[17]: integrate(x**2 * cos(x), (x, 0, pi/2)) # In[18]: eqn = Eq(Derivative(f(x),x,x) + 9*f(x), 1) display(eqn) dsolve(eqn, f(x)) # # Illustrating Taylor series # # We will define a function to compute the Taylor series expansions of a symbolically defined expression at # various orders and visualize all the approximations together with the original function # In[19]: get_ipython().run_line_magic('matplotlib', 'inline') import numpy as np import matplotlib.pyplot as plt # In[20]: # You can change the default figure size to be a bit larger if you want, # uncomment the next line for that: #plt.rc('figure', figsize=(10, 6)) # In[21]: def plot_taylor_approximations(func, x0=None, orders=(2, 4), xrange=(0,1), yrange=None, npts=200): """Plot the Taylor series approximations to a function at various orders. Parameters ---------- func : a sympy function x0 : float Origin of the Taylor series expansion. If not given, x0=xrange[0]. orders : list List of integers with the orders of Taylor series to show. Default is (2, 4). xrange : 2-tuple or array. Either an (xmin, xmax) tuple indicating the x range for the plot (default is (0, 1)), or the actual array of values to use. yrange : 2-tuple (ymin, ymax) tuple indicating the y range for the plot. If not given, the full range of values will be automatically used. npts : int Number of points to sample the x range with. Default is 200. """ if not callable(func): raise ValueError('func must be callable') if isinstance(xrange, (list, tuple)): x = np.linspace(float(xrange[0]), float(xrange[1]), npts) else: x = xrange if x0 is None: x0 = x[0] xs = sym.Symbol('x') # Make a numpy-callable form of the original function for plotting fx = func(xs) f = sym.lambdify(xs, fx, modules=['numpy']) # We could use latex(fx) instead of str(), but matploblib gets confused # with some of the (valid) latex constructs sympy emits. So we play it safe. plt.plot(x, f(x), label=str(fx), lw=2) # Build the Taylor approximations, plotting as we go apps = {} for order in orders: app = fx.series(xs, x0, n=order).removeO() apps[order] = app # Must be careful here: if the approximation is a constant, we can't # blindly use lambdify as it won't do the right thing. In that case, # evaluate the number as a float and fill the y array with that value. if isinstance(app, sym.numbers.Number): y = np.zeros_like(x) y.fill(app.evalf()) else: fa = sym.lambdify(xs, app, modules=['numpy']) y = fa(x) tex = sym.latex(app).replace('$', '') plt.plot(x, y, label=r'$n=%s:\, %s$' % (order, tex) ) # Plot refinements if yrange is not None: plt.ylim(*yrange) plt.grid() plt.legend(loc='best').get_frame().set_alpha(0.8) # With this function defined, we can now use it for any sympy function or expression # In[22]: plot_taylor_approximations(sin, 0, [2, 4, 6], (0, 2*pi), (-2,2)) # In[23]: plot_taylor_approximations(cos, 0, [2, 4, 6], (0, 2*pi), (-2,2)) # This shows easily how a Taylor series is useless beyond its convergence radius, illustrated by # a simple function that has singularities on the real axis: # In[24]: # For an expression made from elementary functions, we must first make it into # a callable function, the simplest way is to use the Python lambda construct. plot_taylor_approximations(lambda x: 1/cos(x), 0, [2,4,6], (0, 2*pi), (-5,5))