#!/usr/bin/env python # coding: utf-8 # # Nonlinear Schrödinger as a Dynamical System # # #### [Ascona Winter School 2016](http://www.math.uzh.ch/pde16/index-Ascona2016.html), [(alternate link)](http://www.monteverita.org/en/90/default.aspx?idEvent=295&archive=) # # # #### [J. Colliander](http://colliand.com) ([UBC](http://www.math.ubc.ca)) # ## Lectures # # 1. [Introduction](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture1.ipynb) # 2. **[Conservation](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture2.ipynb)** # 3. [Monotonicity](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture3.ipynb) # 4. [Research Frontier](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture4.ipynb) # # ### https://github.com/colliand/ascona2016 # # *** # ## Overview of Lecture 2 # # * Conserved Quantities # * Bourgain's High/Low Frequency Decomposition # * $I$-Method # * Multilinear Correction Terms # * Applications # ## Lecture Notes # # ### [https://github.com/colliand/ascona2016](https://github.com/colliand/ascona2016) # # Conserved Quantities # # $$ # \begin{align*} # {\mbox{Mass}}& = \| u \|_{L^2_x}^2 = \int_{\mathbb{R}^d} |u(t,x)|^2 dx. \\ # {\mbox{Momentum}}& = {\textbf{p}}(u) = 2 \Im \int_{\mathbb{R}^2} {\overline{u}(t)} \nabla u (t) # dx. \\ # {\mbox{Energy}} & = H[u(t)] = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla u(t) |^2 dx {\pm} \frac{2}{p+1} |u(t)|^{p+1} dx . # \end{align*} # $$ # ## Conserved ## # $$ \partial_t Q[u] = 0.$$ # # ## Almost Conserved## # $$\big| \partial_t Q[u] \big| ~\mbox{is small}.$$ # # $$ \sup_{t \in T_{lwp}} Q[u(t)] - \inf_{t \in T_{lwp}} Q[u(t)] < \epsilon$$ # $$ \int_0^{T_{lwp}} (\partial_t Q)[u(\tau)] d\tau < \epsilon $$ # ## Conservation of Mass # $$ \partial_t |u(t)|^2 = \partial_t ( u \overline{u} ) = u_t \overline{u} + u \overline{u}_t$$ # # # # From the equation $ (i \partial_t + \Delta) u = \pm |u|^{p-1} u $, we have: # $$ u_t = i \Delta u \mp i |u|^{p-1} u$$ # $$ {\overline{u}}_t = -i \Delta {\overline{u}} \pm i |u|^{p-1} {\overline{u}}$$ # Thus, # $$ \partial_t |u(t)|^2 = [ i \Delta u \mp i |u|^{p-1} u] \overline{u} + u [ -i \Delta {\overline{u}} \pm i |u|^{p-1} {\overline{u}}]$$ # $$ \partial_t |u(t)|^2 = i[ \overline{u} \Delta u - u\Delta {\overline{u}} ] \pm i [ |u|^{p+1} - |u|^{p+1} ] $$ # $$ \partial_t |u(t)|^2 = \nabla \cdot \Im [ \overline{u} \nabla u ]$$ # # Bourgain's High/Low Method # ![bourgain-front-page](https://wwejubwfy.s3.amazonaws.com/1998_Bourgain_IMRN_FrontPage.pdf-2016-01-11-06-15-59.jpg) # # # # Consider the Cauchy problem for defocusing cubic NLS on $\mathbb{R}^2$: # \begin{equation*} # \tag{{$NLS^{+}_3 (\mathbb{R}^2)$}} # \left\{ # \begin{matrix} # (i \partial_t + \Delta) u = +|u|^{2} u \\ # u(0,x) = u_{hi_0} (x). # \end{matrix} # \right. # \end{equation*} # We describe the first result to give global well-posedness below # $H^1$. # # * $NLS_3^+ (\mathbb{R}^2)$ is GWP in $H^s$ for $s > \frac{2}{3}$. # * First use of *Bilinear Strichartz* # estimate was in this proof. # * Proof cuts solution into low and high frequency parts. # * For $u_0 \in H^s, # ~s>\frac{2}{3},$ Proof gives (and *crucially exploits*), # $$ u(t) - e^{it \Delta } u_{hi_0} \in H^1 (\mathbb{R}^2_x).$$ # # # # # Setting up; Decomposing Data # # * Fix a large target time $T$. # * Let $N = N(T)$ be large to be determined. # * Decompose the initial data: # $$ # u_0 = u_{low} + u_{high} # $$ # where # $$ # u_{low} (x) = \int_{{|\xi| < N}} ~e^{i x \cdot \xi } # \widehat{u_0} (\xi) d \xi. # $$ # * Our plan is to evolve: # $$ # u_0 = u_{low} + u_{high} # $$ # to # $$ # u(t) = u_{{low}} (t) + u_{{high}} (t) . # $$ # # # # Sizes of the Data Components # # # Low Frequency Data Size: # # * Kinetic Energy: # \begin{align*} # \| \nabla u_{low} \|^2_{L^2} &= \int_{|\xi| < N} |\xi|^{2} # | \widehat{u_0} (\xi)|^2 dx \ \\ # &= \int_{|\xi| < N} |\xi|^{2(1-s)} # |\xi|^{2s} |\widehat{u_0} (\xi)|^2 dx \\ # & \leq N^{2(1-s)} \| u_0 \|^2_{H^s} \leq C_0 N^{2(1-s)}. # \end{align*} # # * Potential Energy: # $ # \| u_{low} \|_{L^4_x} \leq \| u_{low} \|_{L^2}^{1/2} \| # \nabla u_{low} \|_{L^2}^{1/2} # $ # $$ # \implies H[ u_{low} ] \leq C N^{2(1-s)}. # $$ # # High Frequency Data Size: # $$\| u_{high} \|_{L^2} \leq C_0 N^{-s}, ~\| u_{high} \|_{H^s} \leq C_0.$$ # # # # LWP of $u_{low}$ Frequency Evolution along NLS # # The NLS Cauchy Problem for the low frequency data # \begin{equation*} # \tag{{${{NLS}}$}} # %\tag{{$NLS^{+}_3 (\mathbb{R}^2)$}} # \left\{ # \begin{matrix} # (i \partial_t + \Delta) u_{{low}} = +|u_{{low}}|^{2} u_{{low}} \\ # u_{{low}}(0,x) = u_{low} (x) # \end{matrix} # \right. # \end{equation*} # is well-posed on $[0, T_{lwp}]$ with $T_{lwp} \thicksim \| # u_{low} \|_{H^1}^{-2} \thicksim N^{-2(1-s)}$. # # We obtain, as a consequence of the local theory, that # $$ # \| u_{{low}} \|_{L^4_{[0,T_{lwp}], x}} \leq \frac{1}{100}. # $$ # # # # LWP of $u_{high}$ Evolution along DE # # The NLS Cauchy Problem for the high frequency data # \begin{equation*} # %\tag{{$NLS^{+}_3 (\mathbb{R}^2)$}} # \left\{ # \begin{matrix} # (i \partial_t + \Delta) u_{{high}} = +2 |u_{{low}}|^2 u_{{high}} + # {\mbox{similar}} + |u_{{high}}|^{2} u_{{high}} \\ # u_{{high}} (0,x) = u_{high} (x) # \end{matrix} # \right. # \end{equation*} # is also well-posed on $[0, T_{lwp}]$. # # # **Crucial Observation:** The LWP lifetime of $NLS$ evolution of $u_{{low}}$ AND # the LWP lifetime of the $DE$ evolution of $u_{{high}}$ are controlled by # $\| u_{{low}}(0)\|_{H^1}$. # # # # Extra Smoothing of Nonlinear Duhamel Term # # The high frequency evolution may # be written # $$ # u_{{high}} (t) = e^{it \Delta} u_{{high}} + w. # $$ # The local theory gives $\| w(t) \|_{L^2} \lesssim N^{-s}$. Moreover, # due to smoothing (obtained via bilinear Strichartz), we have that # \begin{equation} # \tag{SMOOTH!} # w \in H^1, ~ \| w(t) \|_{H^1} # \lesssim N^{1-2s+}. # \end{equation} # Let's postpone the proof of (SMOOTH!). # # # # Nonlinear High Frequency Term Hiding Step! # # * $\forall ~t \in [0, T_{lwp}]$, we have # $$ # u(t) = u_{{low}} (t) + e^{it \Delta } u_{high} + w(t). # $$ # * # At time $T_{lwp}$, we define data for the progressive scheme: # $$ # u(T_{lwp} ) = u_{{low}} (T_{lwp}) + w(T_{lwp} ) + e^{iT_{lwp} \Delta} # u_{high}. # $$ # # $$ # u(t) = u^{(2)}_{{low}} (t) + u^{(2)}_{{high}} (t) # $$ # for $ t > T_{lwp}$. # # # # Hamiltonian Increment: $u_{low} (0) \longmapsto # u^{(2)}_{{low}} (T_{lwp})$ # # The Hamiltonian increment due to $w(T_{lwp})$ being added to low # frequency evolution can be calcluated. Indeed, by Taylor expansion, # using the bound (SMOOTH!) and energy conservation # of $u_{{low}}$ evolution, we have # using # \begin{align*} # H[u^{(2)}_{{l}} (T_{lwp})] &= H[u_{{l}} (0)] + (H[ u_{{l}} (T_{lwp}) + # w(T_{lwp}) ] - H[u_{{l}} (T_{lwp})]) \\ # & \thicksim N^{2(1-s) } + N^{2 -3s+} \thicksim N^{2(1-s)}. # \end{align*} # # We can accumulate $N^s$ increments of size $N^{2-3s+}$ # before we double the size $N^{2(1-s)}$ # of the Hamiltonian. During the iteration, Hamiltonian of ``low # frequency'' pieces remains of size $\lesssim N^{2(1-s)}$ so the LWP # steps are of uniform size $N^{-2(1-s)}$. We advance the solution on a # time interval of size: # $$ # N^s N^{-2(1-s)} = N^{-2 + 3s}. # $$ # For $s>\frac{2}{3}$, we can choose $N$ to go past target time $T. ~\blacksquare$ # # # # How do we prove (SMOOTH!)? # # The proof follows from a **bilinear estimate**. # # # # # Bilinear Strichartz Estimate # # # # * Recall the Strichartz estimate for $(i \partial_t + \Delta)$ on $\mathbb{R}^2$: # $$ # \| e^{it \Delta} u_0 \|_{L^4 ( \mathbb{R}_t \times \mathbb{R}^2_x)} \leq C # \| u_0 \|_{L^2 (\mathbb{R}^2_x)}. # $$ # # * We can view this trivially as a bilinear estimate by writing # $$ # \| e^{it \Delta} u_0 ~ e^{it \Delta} v_0 \|_{L^2 ( \mathbb{R}_t \times \mathbb{R}^2_x)} \leq C # \| u_0 \|_{L^2 (\mathbb{R}^2_x)} \| v_0 \|_{L^2 (\mathbb{R}^2_x)} . # $$ # * Bourgain refined this trivial bilinear estimate for # functions having certain Fourier support properties. # # # # Bilinear Strichartz Estimate # # For (dyadic) $N \leq L$ and for $x \in \mathbb{R}^2$, # $$ # \| e^{it\Delta} f_L e^{it\Delta} g_N \|_{L^2_{t,x}} \leq # \frac{N^{\frac{1}{2}}}{L^{\frac{1}{2}}} \| f_L \|_{L^2_x} \| g_N # \|_{L^2_x}. # $$ # # # # * Here $\mbox{spt}~(\widehat{f_L}) \subset \{ |\xi | \thicksim L\}, # ~g_N$ similar. # * Observe that $\sqrt{\frac{N}{L}} \ll 1$ when $N \ll L$. # # $I$-Method # # # The $I$-Method of Almost Conservation # # # # Let $H^s \ni u_0 \longmapsto u$ solve $NLS$ for $t \in [0, T_{lwp}], T_{lwp} \thicksim \|u_0 \|_{H^s}^{-2/s}.$ # # # Consider two ingredients (to be defined): # # * A **smoothing operator** $I = I_N: H^s \longmapsto H^1$. The $NLS$ evolution $u_0 \longmapsto u$ induces a **smooth reference evolution** $H^1 \ni Iu_0 \longmapsto Iu$ solving $I(NLS)$ equation on $[0,T_{lwp}]$. # * A **modified energy** $\widetilde{E}[Iu]$ built using the reference evolution. # # # First Version of the $I$-method: ${\widetilde{E}}= H[Iu]$ # # # # For $s<1, N \gg 1$ define smooth monotone $m: \mathbb{R}^2_\xi \rightarrow \mathbb{R}^+$ s.t. # $$ # m(\xi) = # \left\{ # \begin{matrix} # 1 & {\mbox{for}}~ |\xi | 2N. # \end{matrix} # \right. # $$ # # # The associated Fourier multiplier operator, # ${\widehat{(Iu)}} (\xi) = m(\xi) \widehat{u} (\xi),$ # satisfies $I: H^s \rightarrow H^1 $. Note that, pointwise in time, we have # $$ # \| u \|_{H^s} \lesssim \| Iu \|_{H^1} \lesssim N^{1-s} \|u \|_{H^s}. # $$ # # # Set $\widetilde{E}[Iu(t)] = H[Iu(t)]$. Other choices of $\widetilde E$ # are mentioned later. # # # # AC Law Decay and Sobolev GWP index # # # * **Modified LWP.** Initial $v_0$ s.t. $\| \nabla I v_0 # \|_{L^2} \thicksim 1$ has $T_{lwp} \thicksim 1$. # # * **Goal.** $\forall ~u_0 \in H^s, ~\forall ~T > 0$, construct # $u:[0,T] \times \mathbb{R}^2 \rightarrow \mathbb{C}.$ # # * $\iff$ **Dilated Goal.** Construct # $ # u^\lambda: [0, \lambda^2 T] \times \mathbb{R}^2 \rightarrow \mathbb{C}. # $ # # * **Rescale Data.** $\| I \nabla u_0^\lambda # \|_{L^2} \lesssim N^{1-s} \lambda^{-s} \| u_0 \|_{H^s} \thicksim 1$ # provided we choose $\lambda = \lambda (N) \thicksim # N^{\frac{1-s}{s}} \iff N^{1-s} \lambda^{-s} \thicksim 1$. # * **Almost Conservation Law.** $\| I \nabla u ( t ) \|_{L^2} # \lesssim H[Iu(t)]$ and # $$ # \sup_{t \in [0, T_{lwp}]} H[Iu(t) ] \leq H [Iu(0)] + N^{-\alpha}. # $$ # * **Delay of Data Doubling.** Iterate modified LWP $N^\alpha$ steps # with $T_{lwp} \thicksim 1$. We obtain rescaled solution for $t \in # [0, N^\alpha]$. # $$ # \lambda^2(N) T < N^\alpha \iff T < N^{\alpha + \frac{2(s-1)}{s}} # ~{\mbox{so}}~ s > \frac{2}{2+\alpha}~{\mbox{suffices}}. # $$ # # # # Almost Conservation Law for $H[Iu]$ # # # # Given $s > \frac{4}{7}, N \gg 1,$ and initial data # $u_0 \in C^{\infty}_0(\mathbb{R}^2)$ with $E(I_N u_0) \leq 1$, then # there exists a $ T_{lwp}\thicksim 1$ so that the solution # \begin{align*} # u(t,x) & \in C([0,T_{lwp}], H^s(\mathbb{R}^2)) # \end{align*} # of $NLS_3^+ (\mathbb{R}^2)$ satisfies # \begin{equation*} # \label{increment} # E(I_N u)(t) = E(I_N u)(0) + O(N^{- \frac{3}{2}+}), # \end{equation*} # for all $t \in [0, T_{lwp}]$. # # # # # Ideas in the Proof of Almost Conservation # # * Standard Energy Conservation Calculation: # \begin{align*} # \partial_t H(u) &= \Re \int_{\mathbb{R}^2} \overline{u_t} (|u|^2 u - # \Delta u) dx \\ # & = \Re \int_{\mathbb{R}^2} \overline{u_t} ( |u|^2 u - # \Delta u - i u_t) dx = 0. # \end{align*} # # # * For the smoothed reference evolution, we imitate.... # \begin{align*} # \partial_t H(Iu) &= \Re \int_{\mathbb{R}^2} \overline{Iu_t} (|Iu|^2 Iu - # \Delta Iu - i I u_t)dx \\ # & = \Re \int_{\mathbb{R}^2} \overline{Iu_t} ( |Iu|^2 Iu - I (|u|^2 u)) dx \neq 0. # \end{align*} # * The increment in modified energy involves a commutator, # $$H(Iu)(t) - H(Iu)(0) = \Re \int_0^t \int_{\mathbb{R}^2} \overline{Iu_t} ( |Iu|^2 Iu - I (|u|^2 u)) dx dt. # $$ # * Littlewood-Paley, Case-by-Case, **(Bi)linear Strichartz**, $X_{s,b}$.... # # # Remarks # # * The almost conservation property # $$ \sup_{t \in [0, T_{lwp}]} \widetilde{E}[Iu(t)] \leq # \widetilde{E}[Iu_0] + N^{-\alpha}$$ # leads to GWP for # $$ # s > s_\alpha = \frac{2}{2+\alpha}. # $$ # * The $I$-method is a **subcritical method**. # # * The $I$-method **localizes the conserved density** in # frequency}}. # # * There is a **multilinear corrections algorithm** for defining # other choices of # $\widetilde{E}$ which yield a better AC property. # # Multilinear Correction Terms # # # ## Multilinear Correction Terms # # * For $k \in {\mathbb{N}}$, define the **convolution hypersurface** # $$ \Sigma_k := \{ (\xi_1,\ldots,\xi_k) \in (\mathbb{R}^2)^k: \xi_1 + \ldots + # \xi_k = 0 \} \subset (\mathbb{R}^2)^k.$$ # * For $M: \Sigma_k \to \mathbb{C}$ and $u_1,\ldots,u_k$ nice, define # **$k$-linear functional** # $$ \Lambda_k( M; u_1,\ldots,u_k ) := # c_k ~\mathbb{R}e \int\limits_{\Sigma_k} M(\xi_1,\ldots,\xi_k) \widehat{u_1}(\xi_1) \ldots \widehat{u_k}(\xi_k).$$ # * For $k \in 2{\mathbb{N}}$ abbreviate # $\Lambda_k (M; u) = \Lambda_k (M; u, \overline{u}, \ldots, \overline{u}).$ # * $\Lambda_k (M;u)$ invariant under interchange of even/odd arguments, # $$ # M (\xi_1,\xi_2,\ldots,\xi_{k-1},\xi_k) \mapsto \overline{M}(\xi_2,\xi_1,\ldots,\xi_k,\xi_{k-1}).$$ # * We can define a symmetrization rule via group orbit. # # ## Examples # # # * # $$ # \int\limits_x u \overline{u} u \overline{u} dx = \int (\int e^{i x \cdot # \xi_1} \widehat{u} (\xi_1) d\xi_1) \ldots (\int e^{i x \cdot # \xi_4} \widehat{\overline{u}} (\xi_4) d\xi_4) dx # $$ # $$ # = \int_{\xi_1, \dots, \xi_4} \left[\int_x e^{i x \cdot ( \xi_1 + \xi_2 + # \xi_3 + \xi_4)} dx\right] # \widehat{u} (\xi_1) \widehat{\overline{u}} (\xi_2) \widehat{u} (\xi_3) \widehat{\overline{u}} (\xi_4) # d \xi_{1, \ldots ,4} # $$ # $$ # = \int\limits_{\Sigma_4} \widehat{u} (\xi_1) \widehat{\overline{u}} (\xi_2) # \widehat{u} (\xi_3) \widehat{\overline{u}} (\xi_4) # = \Lambda_4 (1; u). # $$ # # * # $$\Lambda_2 (-\xi_1 \cdot \xi_2; u) = \| \nabla u \|_{L^2}^2.$$ # # # # # Thus, $H[u] = \Lambda_2 ( - \xi_1 \cdot \xi_2; u) \pm \Lambda_4 (\frac{1}{2} ; u)$. # # # ## Time Dependence of Multilinear Forms # # Suppose $u$ nicely solves $NLS_3^+ (\mathbb{R}^2)$; $M$ is time # independent, symmetric. # # ### How would you calculate # # $$ # \partial_t \Lambda_k( M; u(t) )? # $$ # # ## Time Differentiation Formula # # # $$ # \partial_t \Lambda_k( M; u(t) ) = # \Lambda_k( i M \alpha_k; u(t) ) - \Lambda_{k+2}( i k X(M); u(t) ) # $$ # $$ # = # \Lambda_k( i M \alpha_k; u(t) ) - \Lambda_{k+2}( [i k X(M)]_{sym}; u(t) # ). # $$ # Here # $$ \alpha_k(\xi_1,\ldots,\xi_k) := -|\xi_1|^2 + |\xi_2|^2 - \ldots - |\xi_{k-1}|^2 + |\xi_k|^2$$ # (so $\alpha_2 = 0$ on $\Sigma_2$) and # $$ X(M)(\xi_1,\ldots,\xi_{k+2}) := M( \xi_{123}, \xi_4, \ldots, \xi_{k+2}).$$ # We use the notation $\xi_{ab} := \xi_a + \xi_b$, $\xi_{abc} := \xi_a + # \xi_b + \xi_c$, etc. # # # ## AC Quantities via Multilinear Corrections # # # * Abbreviate $m(\xi_j)$ as $m_j$. Define $\sigma_2$ s.t. $\| I \nabla u \|_{L^2}^2 = \Lambda_2 (\sigma_2; u):$ # $$\sigma_2(\xi_1,\xi_2) := - # \frac{1}{2} \xi_1 m_1 \cdot \xi_2 m_2 = \frac{1}{2} |\xi_1|^2 m_1^2$$ # # * With $\tilde \sigma_4$ (symmetric, time independent) {{to be determined}}, set # $$ # {\widetilde{E}} := \Lambda_2( \sigma_2 ; u ) + \Lambda_4( \tilde # \sigma_4 ; u ). # $$ # * Using the time differentiation formula, we calculate # $$ # \partial_t \widetilde E = \Lambda_4 ( {{\left\{i \tilde # \sigma_4 \alpha_4 - i 2[ X (\sigma_2)]_{sym} \right\}}} ; u) - # \Lambda_6 ( [i 4 X(\tilde \sigma_4)]_{sym}; u). # $$ # # # # We'd like to define $\tilde \sigma_4$ to cancel away the $\Lambda_4$ # contribution. # # # ## Natural Choice of $\sigma_4$ Fails # # Here is the natural choice: # $$ \tilde \sigma_4 =~ \frac{[2 i X(\sigma_2)]_{sym}}{i \alpha_4}.$$ # On $\Sigma_4$, we can reexpress $\alpha_4 = -|\xi_1|^2 + |\xi_2|^2 # -|\xi_3|^2 + |\xi_4|^2$ as # $$ # \alpha_4 = -2 \xi_{12} \cdot \xi_{14} = -2 |\xi_{12}| |\xi_{14}| \cos # \angle(\xi_{12},\xi_{14}), # $$ # and # $$ # [2 i X(\sigma_2)]_{sym} = \frac{1}{4} ( - m_1^2 |\xi_1|^2 + m_2^2 # |\xi_2|^2 - m_3^2 |\xi_3|^2 + m_4^2 |\xi_4|^2 ). # $$ # When all the $m_j = 1$ (so $\max_{j} |\xi_j | < N$), $\tilde \sigma_4$ is # well-defined. However, $\alpha_4$ can also vanish when $\xi_{12}$ and # $\xi_{14}$ are orthogonal. # # ### Small Divisor Problem # # # # # ## Speculation on Integrable Systems? # # For $NLS_3^+ (\mathbb{R})$, # the resonant obstruction disappears. Thus, # $$ \widetilde E^1 = \Lambda_2 (\sigma_2) + \Lambda_4 (\tilde \sigma_4);$$ # $$ \partial_t \widetilde E^1 = - \Lambda_6 ( [i 4 X(\tilde \sigma_4)]_{sym}).$$ # We can then define, with $\tilde \sigma_6$ to be determined, # $$\widetilde E^2 = \widetilde E^1 + \Lambda_6 (\tilde \sigma_6 );$$ # $$ # \partial_t \widetilde E^2 = \Lambda_6 ( {{\{ i \tilde \sigma_6 # \alpha_6 - [i 4 X(\tilde \sigma_4)]_{sym}\} }}) + # \Lambda_{8}( [i 6 X(\tilde \sigma_6)]_{sym}). # $$ # Let's define # $$ # \tilde \sigma_6 = \frac{[i 4 X (\tilde \sigma_4)]_{sym}}{i \alpha_6}. # $$ # # ## Speculation on Integrable Systems? # # Thus, we formally obtain a continued-fraction-like algorithm. # $$ # \tilde \sigma_6 = \frac{\left[i 4 X \left ( \frac{[2 i # X(\sigma_2)]_{sym}}{i \alpha_4}\right)\right]_{sym}}{i \alpha_6}, # $$ # $$ # \tilde \sigma_8 = \frac{\left[i 6 X \left( \frac{\left[i 4 X \left ( \frac{[2 i # X(\sigma_2)]_{sym}}{i \alpha_4}\right)\right]_{sym}}{i \alpha_6} # \right)\right]_{sym}}{i \alpha_8}, \ldots. # $$ # Each step gains two derivatives but costs two more factors. # # **Speculation:** The multipliers $\tilde \sigma_6, \tilde \sigma_8, # \ldots$ are well defined and lead to better AC properties. Same for # other integrable systems.