#!/usr/bin/env python # coding: utf-8 # 7. Multi-variable Calculus # === # [13.1 Functions of Several Variables](6%20Multi-variable%20Calculus-Differentiation-1.ipynb#Functions-of-Several-Variables)
# [13.2 Limits and Continuuity](6%20Multi-variable%20Calculus-Differentiation-1.ipynb#Limit-and-Continuity)
# [13.3 Partial Differentiation](6%20Multi-variable%20Calculus-Differentiation-2.ipynb#Partial-Differentiation)
# [13.4 Chain Rule](6%20Multi-variable%20Calculus-Differentiation-2.ipynb#Chain-Rule)
# [13.5 Tangent Plane](6%20Multi-variable%20Calculus-Differentiation-2.ipynb#Tangent-Plane)
# [13.8 Relative Extrema](#Relative-Maxima-and-Minima)
# [13.9 Lagrange Multiplier](#Optimization-Problem-with-Constraints)
# [13.8 Method of Least Squares](#The-Method-of-Least-Squares) # In[2]: from IPython.core.display import HTML css_file = 'css/ngcmstyle.css' HTML(open(css_file, "r").read()) # In[4]: get_ipython().run_line_magic('matplotlib', 'inline') #rcParams['figure.figsize'] = (10,3) #wide graphs by default import scipy import numpy as np import time from mpl_toolkits.mplot3d import Axes3D from IPython.display import clear_output,display import matplotlib.pylab as plt from matplotlib import cm plt.style.use('ggplot') # In[5]: from sympy import hessian,symbols,solve,diff,sin,cos,pi grad = lambda func, vars :[diff(func,var) for var in vars] x,y,z=symbols("x y z",real=True) # In[3]: import plotly.plotly as py from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot,iplot_mpl init_notebook_mode() # Relative Maxima and Minima # --- # # From now on, let $\vec{\mathbf{x}} = (x^1, \cdots, x^n) \in \mathbb{R}^n$ and # $\overrightarrow{\mathbf{x}_0} = (x_0^1, \cdots, x^n_0) \in \mathbb{R}^n$. # Also let $f_i (\vec{x}) = \frac{\partial f}{\partial x^i}$ be the $i$-th # partial derivative. # # Definition # --- # # $z_0 = f (\vec{\mathbf{x\!}}_0)$ is called a relative maximum if there is $r> 0$ such that we have # $f (\vec{\mathbf{\!x}}) \le f(\vec{\mathbf{x}}_0) $ # for $| \vec{\mathbf{x}} - \vec{\mathbf{x}}_0 |< r$. $z_0 = f (\vec{\mathbf{x}}_0)$ # is called a relative minimum if there is $r > 0$ such that we have # $f (\vec{\mathbf{x}}) \ge f(\vec{\mathbf{x}}_0) $ for $| \vec{\mathbf{x}} - \vec{\mathbf{x}}_0 |< r$. # # # Theorem # --- # # If $z_0 = f (\vec{\mathbf{x}}_0)$ is a relative extremum then $f_i(\vec{\mathbf{x}}_0) = 0$ for all $i = 1, \cdots, n$ if they exist. All such points are called **critical points** or # **stationary points**. # # # Although, the theorem can not state at which function attains its extrema, but # we can still use this theorem to find out all the places at which extrema of # functions attain. # Example # --- # Find all the critical points of the following functions: # # **1.** $f (x, y) = x^2 + 4 y^2$. (reference the following picture at left) # # $f_x = 2 x = 0, f_y = 8 y = 0$ implies $(x, y) = (0, 0)$ is the only # critical point of $f (x, y)$. Since $f (x, y) \ge0 = f (0, 0)$, # $f (x, y)$ attains its minimum at $(0, 0)$. # # **2.** For $f (x, y) = x^2 - 4 y^2$ (reference the following picture at right) , # $f_x = 2 x = 0, f_y = - 8 y = 0$ implies $(x, y) = (0,0)$ which is also the only one critical point of $f (x, y)$. But $f (0, 0)$ can not be any extremum since # # $$ f (\delta, 0) \geqslant f (0, 0) \ge f (0, \delta) \text{ for any } \delta > 0 $$ # # **3.** From the condition, # # $$ f_x = 4 x - 1 = 0, f_y = 2 y - 2 = 0, f_z = 8 z = 0 $$ # the critical point is $(\frac{1}{4}, 1, 0)$ and $f (x, y, z)$ attainsits relative minimum at this critical point. # # **4.** $f(x,y)=x^2+y^2-4x-6y+17=(x-2)^2+(y-3)^2+4\ge4$: this implies only critical point at $(x,y)=(2,3)$ which attains its minimuum, 4. # # **5.** $f(x,y)=3-\sqrt{x^2+y^2}\le3$: critical point $(0,0)$ and maximum is 3: # $$\nabla f=\left[\frac{-x}{\sqrt{x^2+y^2}},\frac{-y}{\sqrt{x^2+y^2}}\right]=(0,0)$$ # Note: $\nabla f $ fails to exit at $(0,0)$. # In[4]: fig = plt.figure(figsize=(12,10)) ax1 = fig.add_subplot(2, 2, 1, projection='3d') #ax1 = fig.gca(projection='3d') X = np.arange(-1.2, 1.2, 0.04) Y = np.arange(-1.2, 1.2, 0.04) X, Y = np.meshgrid(X, Y) g= X**2 + 4 *Y**2 ax1.plot_surface(X, Y, g) ax1.set_title("$f(x,y)=x^2+4y^2$") ax = fig.add_subplot(2, 2, 2, projection='3d') X = np.arange(-1.2, 1.2, 0.04) Y = np.arange(-1.2, 1.2, 0.04) X, Y = np.meshgrid(X, Y) f= X**2 - 4 *Y**2 ax.plot_wireframe(X, Y, f) ax.set_title("$f(x,y)=x^2-4y^2$") ax1 = fig.add_subplot(2, 2, 3, projection='3d') #ax1 = fig.gca(projection='3d') X = np.arange(1, 3, 0.04) Y = np.arange(2, 4, 0.04) X, Y = np.meshgrid(X, Y) g= (X-2)**2 + (Y-3)**2+4 ax1.plot_surface(X, Y, g) ax1.set_title("$f(x,y)=(x-2)^2+(y-3)^2+4$") from numpy import sqrt,pi ax = fig.add_subplot(2, 2, 4, projection='3d') X = np.arange(-2, 2, 0.04) Y = np.arange(-2, 2, 0.04) X, Y = np.meshgrid(X, Y) f= 3-sqrt(X**2 + Y**2) ax.plot_wireframe(X, Y, f) ax.set_title("$3-\sqrt{x^2+y^2}$") # In[25]: from sympy import solve x,y,z=symbols("x y z") f=2*x*x+y*y+4*z*z-x-2*y df=grad(f,[x,y,z]) solve(df,[x,y,z]) # Example # --- # # Suppose that $x^i, i = 1, 2, \cdots, n$ satisfies # # $$ f_{\mu, \sigma} (x^i) = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left( - # \frac{(x^i - \mu)^2}{2 \sigma^2} \right) $$ # Define $L (\mu, \sigma^2)$ as follows: # # \begin{eqnarray*} # L (\mu, \sigma^2) & = & \prod_{i = 1}^n f_{\mu, \sigma} (x^i)\\ # & = & \prod_{i = 1}^n \left[ \frac{1}{\sqrt{2 \pi} \sigma} \exp \left( - # \frac{(x^i - \mu)^2}{2 \sigma^2} \right) \right]\\ # & = & \frac{1}{(2 \pi \sigma^2)^{n / 2}} \exp \left( - \sum_{i = 1}^n # \frac{(x^i - \mu)^2}{2 \sigma^2} \right) # \end{eqnarray*} # What values of $(\mu, \sigma^2)$ will makes $L (\mu, \sigma^2)$ attains its # maximum? Before answering this question, note that # # - assume $(\hat{\mu}, \hat{\sigma}^2)$ is the value such that # maximizes $L (\mu, \sigma^2)$; # - Suppose that the value of $(\hat{\mu}, \hat{\sigma}^2)$ maximizes $L # (\mu, \sigma^2)$. This it also maximizes $\ln L (\mu, \sigma^2)$. This # means that we have to find the value of $(\hat{\mu}, \hat{\sigma}^2)$ # that maximizes the following: # # \begin{eqnarray*} # \ln L (\mu, \sigma^2) & = & \ln \left[ \frac{1}{(2 \pi \sigma^2)^{n / # 2}} \exp \left( - \sum_{i = 1}^n \frac{(x^i - \mu)^2}{2 \sigma^2} # \right) \right]\\ # & = & - \frac{n}{2} (\ln 2 \pi + \ln \sigma^2) - \left( \frac{1}{2 # \sigma^2} \sum_{i = 1}^n (x^i - \mu)^2 \right) # \end{eqnarray*} # # Then the critical value $(\hat{\mu}, \hat{\sigma}^2)$ satisfies: # # \begin{eqnarray*} # 0 & = & \frac{\partial}{\partial \mu} \ln L (\mu, \sigma^2)\\ # & = & \frac{1}{\sigma^2} \sum_{i = 1}^n (x^i - \mu)\\ # 0 & = & \frac{\partial}{\partial \sigma^2} \ln L (\mu, \sigma)\\ # & = & - \frac{n}{2 \sigma^2} + \frac{1}{2 (\sigma^2)^2} \sum_{i = 1}^n # (x^i - \mu)^2 # \end{eqnarray*} # From the first result, we can get the value, $\hat{\mu}$, as: # # \begin{eqnarray*} # & \frac{1}{\sigma^2} \sum_{i = 1}^n (x^i - \mu) = 0 & \\ # \Longrightarrow & \sum_{i = 1}^n (x^i - \mu) = 0 & \\ # \Longrightarrow & n \mu = \sum_{i = 1}^n x^i & \\ # \Longrightarrow & \hat{\mu} = \sum_{i = 1}^n x^i / n = \bar{x} & # \end{eqnarray*} # i.e. $\hat{\mu}$ is the mean of sum of $x^i, i = 1, 2, \cdots, n$, # called **sample mean**. # # $$ - \frac{n}{2 \sigma^2} + \frac{1}{2 (\sigma^2)^2} \sum_{i = 1}^n (x^i - # \mu)^2 = 0 $$ # we have: # # \begin{eqnarray*} # \widehat{\sigma^2} & = & \frac{1}{n} \sum_{i = 1}^n (x^i - \hat{\mu})^2\\ # & = & \frac{1}{n} \sum_{i = 1}^n (x^i - \bar{x})^2\\ # & = & \frac{1}{n} \sum_{i = 1}^n (x^i)^2 - \frac{2 \bar{x}}{n} \sum_{i = # 1}^n x^i + \frac{1}{n} \sum_{i = 1}^n (\bar{x})^2\\ # & = & \frac{1}{n} \sum_{i = 1}^n (x^i)^2 - 2 (\bar{x})^2 + (\bar{x})^2 = # \frac{1}{n} \sum_{i = 1}^n (x^i)^2 - (\bar{x})^2 # \end{eqnarray*} # so called the **sample variance**. # # # Note that the term in last result, $\color{red}{- mx_0 - mx_1 + m^2}$, is # equal to $\color{red}{- m^2}$ since$\sum x^i = n \cdot \bar{x}$ # # Note # --- # However, $\widehat{\sigma^2}$ is so-called biased estimator, since # # \begin{eqnarray*} # E \widehat{\sigma^2} & = & E \left( \frac{1}{n} \sum_{i = 1}^n (x^i - # \bar{x})^2 \right)\\ # & = & \frac{1}{n} E \sum_{i = 1}^n (x^i - \mu - (\bar{x} - \mu))^2\\ # & = & \frac{1}{n} \sum_{i = 1}^n E \left( \frac{n - 1}{n} (x^i - \mu) # - \frac{1}{n} \sum^n_{j = 1 j \neq i} (x^j - \mu) \right)^2\\ # & = & \frac{1}{n} \sum_{i = 1}^n \left[ \left( \frac{n - 1}{n} # \right)^2 \sigma^2 + \frac{n - 1}{n^2} \sigma^2 \right]\\ # & = & \frac{1}{n} \sum_{i = 1}^n \frac{n - 1}{n} \sigma^2\\ # & = & \frac{n - 1}{n} \sigma^2 \neq \sigma^2 # \end{eqnarray*} # And # # $$n \widehat{\sigma^2} / (n - 1)=\frac{1}{n - 1} # \sum\limits^n_{i = 1} (x^i - \bar{x})^2$$ # is called the **unbiased estimator** for $\sigma^2$ since # # $$ E \left( \frac{1}{n - 1} \sum^n_{i = 1} (x^i - # \bar{x})^2 \right) = \sigma^2 . $$ # # # In[71]: from sympy import Matrix,symarray,log,symbols,pi,simplify x,mu,sigma=symbols("x m s") n=2 X=symarray('x',n) Xn=Matrix(X).transpose() M=Matrix(1,n,lambda i,j: mu ) XX=(Xn-M)*(Xn-M).transpose() f=1/sqrt(2*pi*sigma)**n*exp(-XX[0]/(2*sigma)) L=log(f) dL=grad(L,[mu,sigma]) m_opt=solve(dL[0],mu) m_opt # In[79]: # not completed mu,m_opt dL[1] #eq_s=sigma*(dL[1]*sigma).subs(mu,m_opt) #solve(eq_s,sigma) # Example # --- # # (Multi-product Monopoly) A company produces t$\text{wo} \text{kinds}$ of # goods, $A$ and $B$, with relative demand functions, $p_1$ and $p_2$. Suppose # the functions satisfy: # # \begin{eqnarray*} # A & = & 100 - 2 p_1 + p_2\\ # B & = & 120 + 3 p_1 - 5 p_2 # \end{eqnarray*} # Assume the cost function for producing $A$ and $B$ has been estimated as # $$ C = 50 + 10 A + 20 B $$ # Then the profit function is # # \begin{eqnarray*} # P (p_1, p_2) & = & p_1 A + p_2 B - C\\ # & = & p_1 (100 - 2 p_1 + p_2) + p_2 (120 + 3 p_1 - 5 p_2) - (50 + 10 (100 - 2 p_1 + p_2) + 20 (120 + 3 p_1 - 5 p_2) \\ # & = & 1350 + 60 p_1 + 210 p_2 - 2 p_{1^{}}^2 - 5 p_2^2 + 4 p_1 p_2 # \end{eqnarray*} # # The critical point of profit function can be obtained by # # \begin{eqnarray*} # & P_{p_1} = P_{p_2} = 0 & \\ # \Longrightarrow & p_1 = 60 & p_2 = 45 # \end{eqnarray*} # # And these imply $A = 25$ and $B = 75$. Here, it is difficulty to check # whether profit is an extremum at this critical point. Later, we will give # some conditions to confirm whether the function value is an extremum at # critical points. # # In[81]: A,B,C,p,q=symbols("A B C p q") P=A*p+B*q-C PP=P.subs(C,50+10*A+20*B).subs([(A,100-2*p+q),(B,120+3*p-5*q)]) solve(grad(PP,[p,q]),[p,q]) # Example # --- # Certain company sells its goods in two different brands, $A$ and $B$. # Suppose that the relations between price function, $p_i$, and demand # function, $x_{i,}$ $i = 1, 2$ in different sub-markets are: # # \begin{eqnarray*} # p_1 = 100 - x_1 & & \\ # p_2 = 120 - 2 x_2 & & # \end{eqnarray*} # with the total cost function: # $$ C = 20 (x_1 + x_2) $$ # Then profit function can be obtained by: # # \begin{eqnarray*} # P (x_1, x_2) & = & p_1 x_1 + p_2 x_2 - C\\ # & = & 80 x_1 - x_1^2 + 100 x_2 - 2 x_2^2 # \end{eqnarray*} # It is trivial that the maximum exists. From the first partial derivatives # properties, the relative extrema must occurs at # # \begin{eqnarray*} # P_{x_1} & = & 80 - 2 x_1 = 0\\ # P_{x_2} & = & 100 - 4 x_2 = 0 # \end{eqnarray*} # And this implies that there exists only one stationary point, $(x_1, x_2) = # (40, 25)$, and at which the maximum attains. # Example # --- # Two firms produce identical products with same price: # # $$ p = 150 - x_1 - x_2 $$ # and with zero cost. For each firms, their profits are in the following # manners respectively: # # \begin{eqnarray*} # P_1 & = & p x_1 = (150 - x_1 - x_2) x_1\\ # P_2 & = & p x_2 = (150 - x_1 - x_2) x_2 # \end{eqnarray*} # Then if they want to get maximum profits, the first partial derivatives have # to be held: # # \begin{eqnarray*} # \frac{\partial P_1}{\partial x_1} & = & 0\\ # \frac{\partial P_2}{\partial x_2} & = & 0 # \end{eqnarray*} # And these imply # # \begin{eqnarray*} # \widehat{x_1} = \frac{150 - x_2}{2} & & \\ # \widehat{x_2} = \frac{150 - x_1}{2} & & # \end{eqnarray*} # From above results, the maximum occurs dependent on other stationary point. # Therefore, two results have to be held simultaneously. In other words, we # have # # $$ x_1 = x_2 = \frac{150}{3} = 50 $$ # From the graphs, the demand functions are intersected at this point, # $\left(\frac{100}{3}, \frac{100}{3}\right)$: # # # This point is called **Cournot equilibrium**. # # # Example # --- # Suppose that there are $n$ little firms produce identical products now. The # price function is # $$ p = 150 - \sum_{i = 1}^n x_i $$ # with zero cost for simplicity. Then at stationary points, the following # relation holds for any $k = 1, \cdots, n$: # # \begin{eqnarray*} # & P_k = p x_k & = x_k \left(150 - \sum_{i = 1}^n x_i\right)\\ # \Longrightarrow & 0 = \frac{\partial P_k}{\partial x_k} & = \left(150 - \sum_{i= 1}^n x_i\right) - x_k # \end{eqnarray*} # Since the equation still remains unchanged even by interchanging indexes # with any two different variables, $x_i$ and $x_j$, it is obvious that # all the $x_i$'s are equal. Thus replace all $x_k$'s with $\widehat{x}$, # then: # # \begin{eqnarray*} # & 0 =\left(150 - \sum_{i = 1}^n \widehat{x_{}}\right) - \widehat{x_{}} & \\ # \Longrightarrow & \widehat{x_{}} = \frac{150}{n + 1} & \text{ for } k = 1, # \cdots, n # \end{eqnarray*} # The last example is just in the case, $n = 2$. # In above examples, the first derivative properties do not assure at which # critical points are extrema. Some strongly conditions are needed to confirm # whether there are extrema at critical point. # # Definition # --- # Suppose that $M = (m_{i j})_{n \times n}$ is a $n \times n$ square matrix # and $\vec{h} = \left( # h_1,h_2,\cdots,h_n\right)_{1 \times n}$ is any $1 \times n$ vector. Then $M$ is # called **positive definite** # if $\vec{h}^t M \vec{h} = \sum\limits^n_{i, # j = 1} h_i m_{i j} h_j > 0$ and called **negative definite** if # $\vec{h}^t M \vec{h} < 0$. # # # Define the Hessian matrix of function $f (\vec{x})$ with its minor matrices # as: # # \begin{eqnarray*} # H & = & (f_{i j})_{n \times n}\\ # H_1 = (f_{11}) & \cdots & H_k = (f_{i j})_{k \times k}, k = 1, \cdots, n - 1 # \end{eqnarray*} # and let $|H_i |$ be the determinant of $H_i$. For multi-variable functions, we # have the following theorem: # # # # The definite properties of Hessian matrices can be determined by calculating # determinants of Hessian matrices and their minor matrices. # # # Theorem # --- # Let $$A = \frac{\partial^2 f}{\partial x^2} (x_0, y_0), B = # \frac{\partial^2 f}{\partial y \partial x} (x_0, y_0) = \frac{\partial^2 # f}{\partial x \partial y} (x_0, y_0),C = \frac{\partial^2 f}{\partial # y^2} (x_0, y_0) \text{ and }\frac{\partial f}{\partial x} (x_0, y_0) = # \frac{\partial f}{\partial y} (x_0, y_0) = 0$$ where $(x_0, y_0)$ is the # critical point of $f (x, y)$, $D = A C - B^2$, then # 1. if $D > 0$ and $A < 0$ , $f (x_0, y_0)$ is a relative maximum, # - if $D > 0$ and $A > 0$ , $f (x_0, y_0)$ is a relative minimum, # - if $D < 0$ , $(x_0, y_0, f (x_0, y_0))$ is a saddle point, # - if $D = 0$, no conclusion. # # Here the **Hessian matrix** for function $f (x, y)$ is defined as # follows: # # $$ H = \left(\begin{array}{cc} # \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y # \partial x}\\ # \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 # f}{\partial y^2} # \end{array}\right) = \left(\begin{array}{cc} # f_{11} & f_{12}\\ # f_{21} & f_{22} # \end{array}\right) $$ # and with determinant $D = |H|$. For higher dimension case, $n \ge 2$, # then: # 1. if $|H_k | > 0$, for $k = 1, \cdots, n$, $f (\vec{x}_0)$ is a relative minimum, # - if $|H_1 | < 0, |H_2 | > 0, \cdots$, $f (\vec{x}_0)$ is a relative maximum, # # where $H_k$ is the submatrix of $H$ and defineds as follows: # # # In[5]: fig = plt.figure(figsize=(12,6)) ax1 = fig.add_subplot(1, 1, 1, projection='3d') #ax1 = fig.gca(projection='3d') X = np.arange(-2,2.5, 0.04) Y = np.arange(2, 7) X, Y = np.meshgrid(X, Y) g= X**3+Y**2-2*X*Y+7*X-8*Y+2 ax1.plot_surface(X, Y, g) ax1.set_title("$f(x,y)=x^3+y^2-2xy+7x-8y+2$") # Example # --- # Suppose that $f (x, y) =x^3+y^2-2xy+7x-8y+2.$ Then the # critical value comes from the following relations: # # \begin{eqnarray*} # & f_x = 3x^2-2y+7 = 0 \text{ and } f_y = 2y-2x-8 = 0 & \\ # \Longrightarrow & (x, y) = (3, 1) & # \end{eqnarray*} # i.e. there are two critical values, $(x, y) = P_1=(1,5), (x, y) = P_2=\left(-1/3,11/3\right)$. By the way, we also have # # \begin{eqnarray*} # H_2 &=& \left(\begin{array}{cc} # f_{11} & f_{12}\\ # f_{21} & f_{22} # \end{array}\right) & \\ # & = &12x-4 # \end{eqnarray*} # 1. $P_1$, $f_{xx}(P_1)=6>0,H(P_1)=8>0$ imply $f(P_1)$ is local minimum; # - $P_2$, $H(P_2)=-8<0$ imply $f(P_2)$ is saddle point; # # Definition # --- # $f(\mathbf{x_0})$ is called absolute maximum of $f(\mathbf{x})$ if $f(\mathbf{x_0})\ge f(\mathbf{x})$ for any $\mathbf{x}$ in its domain; and is called absolute minimum if $f(\mathbf{x_0})\le f(\mathbf{x})$. # # Theorem # --- # Continuous function $f(\mathbf{x})$ should attain its both absolute maximum and minimum in closed domain. This means that the absolute extrema of $f(\mathbf{x})$ could be found from the following steps: # 1. find out all critical values. # - evaluate the function values at the points of (1) and the boundary of $D$, # - absolute maximum is the largest of (2) and the absolute minimum is smallest of (2). # # Note # --- # Extrema on the boundary could be evaluated by the **Lagrange's method** or called **mountain-pass** theorem, introduced later. # In[6]: import plotly.graph_objs as go x=np.linspace(-1,3.5,101) y=np.linspace(-1,2.5,101) x,y=np.meshgrid(x,y) f= 2*x**2+y**2-4*x-2*y+3 t=np.linspace(0,1,101) L1x=3*t L1z=2*L1x**2-4*L1x+3 L3z=2*L1x**2-4*L1x+3 L2y=2*t L2z=2*3**2+L2y**2-4*3-2*L2y+3 L4z=2*0**2+L2y**2-4*0-2*L2y+3 #zt=xt**2-xt*yt+yt**2-xt+yt-6 surface = go.Surface(x=x, y=y, z=f,opacity=0.8) L1 = go.Scatter3d(x=L1x, y=0*L1x, z=0*L1x, mode = "lines", line = dict(color='orange',width = 5) ) L3 = go.Scatter3d(x=L1x, y=0*L1x+2, z=0*L1x, mode = "lines", line = dict(color='orange',width = 5) ) L2 = go.Scatter3d(x=0*L2y+3, y=L2y, z=0*L2y, mode = "lines", line = dict(color='orange',width = 5) ) L4 = go.Scatter3d(x=0*L2y, y=L2y, z=0*L2y, mode = "lines", line = dict(color='orange',width = 5) ) L1f = go.Scatter3d(x=L1x, y=0*L1x, z=L1z, mode = "lines", line = dict(color='red',width = 5) ) L3f = go.Scatter3d(x=L1x, y=0*L1x+2, z=L3z, mode = "lines", line = dict(color='red',width = 5) ) L2f = go.Scatter3d(x=0*L2y+3, y=L2y, z=L2z, mode = "lines", line = dict(color='red',width = 5) ) L4f = go.Scatter3d(x=0*L2y, y=L2y, z=L4z, mode = "lines", line = dict(color='red',width = 5) ) data = [surface,L1,L2,L3,L4,L1f,L3f,L2f,L4f] fig = go.Figure(data=data) iplot(fig) # In[4]: import plotly.plotly as py from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot,iplot_mpl import plotly.graph_objs as go init_notebook_mode() import numpy as np r=np.linspace(0,3,101) t=np.linspace(0,2*np.pi,101) r,t=np.meshgrid(r,t) x=r*np.cos(t) y=r*np.sin(t) f= np.sqrt(x**2+y**2) surface = go.Surface(x=x, y=y, z=f,opacity=0.9) data = [surface] fig = go.Figure(data=data) iplot(fig) # Example # --- # Find the both absolute extrema values of $f (x, y) =2x^2+y^2-4x-2y+3$ on the rectangle: # $$ D=\{0\le x\le3,0\le y\le2\}$$ # 1. critical value: # \begin{eqnarray*} # & f_x = 4x-4 = 0 \text{ and } f_y = 2y-2 = 0 & \\ # \Longrightarrow & (x, y) = (1, 1) & # \end{eqnarray*} # i.e. there are only one critical value, $(x,y) = (1,1)$ with $f(x,y)|_{(x,y)=(1,1)}=0$. # - Let the boundary of $D$ be: # $$L_1\cup L_2\cup L3\cup L_4=\{y=0\}\cup\{x=3\}\cup\{y=2\}\cup\{x=0\}$$ # - $L_1=\{y=0\}$: # \begin{eqnarray} # f_{L_1}&=&f(x,0)\text{ and } 0\le x\le3\\ # &=& 2x^2-4x\\ # f_{L_1}'=0&\Rightarrow&4x-4=0\to x=1 \text{ and } x=3\\ # &\rightarrow& f(1,0)=1,f(3,0)=9 # \end{eqnarray} # - $L_2=\{x=3\}$: # \begin{eqnarray} # f_{L_2}&=&f(y,3)\text{ and } 0\le y\le2\\ # &=& y^2-2y+9\\ # f_{L_2}'=0&\Rightarrow&2y-2=0\to y=1 \text{ and } y=0,2\\ # &\rightarrow& f(3,1)=8,f(3,0)=f(3,2)=9 # \end{eqnarray} # - $L_3=\{y=2\}$: # \begin{eqnarray} # f_{L_3}&=&f(x,0)\text{ and } 0\le x\le3\\ # &=& 2x^2-4x+3\\ # f_{L_3}'=0&\Rightarrow&4x-4=0\to x=1 \text{ and } x=3\\ # &\rightarrow& f(1,2)=1,f(3,2)=9 # \end{eqnarray} # - $L_4=\{x=0\}$: # \begin{eqnarray} # f_{L_4}&=&f(y,0)\text{ and }0\le y\le2\\ # &=& y^2-2y+3\\ # f_{L_4}'=0&\Rightarrow&2y-2=0\to y=1 \text{ and } y=0,2\\ # &\rightarrow& f(0,1)=2,f(0,0)=f(0,2)=3 # \end{eqnarray} # Thus the absolute maximum is 9 and mabsolute minimum is 0. # Example # --- # Suppose that $f (x, y) = 4 x - 2 y - x^2 - 2 y^2 + 2 x y - 10.$ Then the # critical value comes from the following relations: # # \begin{eqnarray*} # & f_1 = 4 - 2 x + 2 y = 0 \text{ and } f_2 = - 2 - 4 y + 2 x = 0 & \\ # \Longrightarrow & (x, y) = (3, 1) & # \end{eqnarray*} # i.e. only one critical value $(x, y) = (3, 1)$. By the way, we also have # # \begin{eqnarray*} # & H_2 = \left(\begin{array}{cc} # f_{11} & f_{12}\\ # f_{21} & f_{22} # \end{array}\right) = \left(\begin{array}{cc} # - 2 & 2\\ # 2 & - 4 # \end{array}\right) & \\ # \Longrightarrow & f_{11} = - 2 < 0 \text{ and } D = f_{11} f_{22} - # (f_{12})^2 = 4 > 0 & # \end{eqnarray*} # # Therefore $f (3, 1) = - 5$ is relative maximum. # Example # --- # $f (x, y) = x^4 + y^4 - 4 x y$,Then the critical values come from the # following relations: # # \begin{eqnarray*} # & f_1 = 4 x^3 - 4 y = 0 \text{ and } f_2 = 4 y^3 - 4 x = 0 & \\ # \Longrightarrow & x = y^3 \text{ and } y = x^3 (\text{i.e. } x = x^9) & \\ # \Longrightarrow & (x, y) = (0, 0) \text{ or } (\pm 1, \pm 1) & # \end{eqnarray*} # And the Hessian matrix is: # # $$ H = \left(\begin{array}{cc} # 12 x^2 & - 4\\ # - 4 & 12 y^2 # \end{array}\right) $$ # # **1.** at $(x, y) = (0, 0)$, # # $$ D = \left| \left(\begin{array}{cc} # 0 & - 4\\ # - 4 & 0 # \end{array}\right) \right| = - 16 < 0 $$ # saddle point. # # **2.** at $(x, y) = (\pm 1, \pm 1)$: # # $$ D = \left| \left(\begin{array}{cc} # 12 & - 4\\ # - 4 & 12 # \end{array}\right) \right| = 128 > 0 $$ # # with $f_{11} (\pm 1, \pm 1) = 12 > 0$. Then $f (- 1, - 1) = - 2$ is a # relative minimum and $f (1, 1) = - 128$ is also a relative minimum. # Example # --- # Revisit the previous example $f (x, y, z) = 2 x^2 + y^2 + 4 z^2 - x - 2 y$. # We have: # # \begin{eqnarray*} # f_1 & = & 4 x - 1\\ # f_2 & = & 2 y - 2\\ # f_3 & = & 8 z\\ # H & = & \left(\begin{array}{ccc} # f_{11} & f_{12} & f_{13}\\ # f_{21} & f_{22} & f_{23}\\ # f_{31} & f_{32} & f_{33} # \end{array}\right)\\ # & = & \left(\begin{array}{ccc} # 4 & 0 & 0\\ # 0 & 2 & 0\\ # 0 & 0 & 8 # \end{array}\right) # \end{eqnarray*} # From the last result, we have: # # \begin{eqnarray*} # |H| & = & 64 > 0\\ # |H_1 | & = & 4 > 0\\ # |H_2 | & = & 4 \cdot 2 = 8 > 0\\ # |H_3 | & = & |H| > 0 # \end{eqnarray*} # # Therefore, $f (x, y, z)$ actually attains its relative minimum at the # critical point, $(1 / 4, 1, 0)$. # In[14]: from sympy import symbols,diff,solve,hessian f=2*x**2+y**2+4*z**2-x-2*y cpts=solve(grad(f,[x,y,z]),[x,y,z]) H=hessian(f,[x,y,z]);H2=hessian(f,[x,y]) H_det=H.det(); H2_det=H2.det() print("the critical point is (%s,%s,%s) and det(H3)=%s, det(H2)=%s" %(cpts[x],cpts[y],cpts[z],H_det,H2_det)) # Example # --- # If a company produces two products, $A$ and $B$, with prices 100 and 300 # respectively. The total cost in producing $x$ units of $A$ and $y$ units of # $B$ is # # $$ C (x, y) = 2000 + 50 x + 80 y + x^2 + 2 y^2 $$ # Revenue $R = 100 x + 300 y$ and # # \begin{eqnarray*} # P (x, y) & = & R (x, y) - C (x, y)\\ # & = & - 2000 + 50 x + 220 y - x^2 - 2 y^2 # \end{eqnarray*} # with $o \leqslant x, y$. First we want to find the critical point: # # \begin{eqnarray*} # \nabla P = \vec{0} & \Longrightarrow & \left( \frac{\partial P}{\partial # x}, \frac{\partial P}{\partial y} \right) = \vec{0}\\ # & \Longrightarrow & 50 - 2 x = 0 \text{and} 220 - 4 y = 0 # \end{eqnarray*} # i.e. only one critical point $(x, y) = (25, 55)$. Also the Hessian matrix is # as follows: # # $$ H = \left(\begin{array}{cc} # - 2 & 0\\ # 0 & - 4 # \end{array}\right) $$ # $P_1 = - 2 < 0$ but $|H| = 8 > 0$. This means that $P (x, y)$ attains its # relative maximum at $(25, 55)$. At this point, $P (x, y)$ attains its # maximum too. # Exercise # --- # Find the relative extrema of $f (x, y) = x^3 + y^3 - 3 x y$ if any. # # **1.** Find the critical point(s) as follows: # # \begin{eqnarray*} # \nabla f = \vec{0} & \Longrightarrow & (3 x^2 - 3 y, 3 y^2 - 3 x) = (0,0)\\ # & \Longrightarrow & y = x^2 \text{ and } x = y^2 (i.e. x = x^4)\\ # & \Longrightarrow & (x, y) = (0, 0) \text{ or } (1, 1) # \end{eqnarray*} # There exist two critical points. # **2.** Find Hessian matrix: # # $$ \begin{array}{lll} # H & = & \left(\begin{array}{cc} # 6 x & - 3\\ # - 3 & 6 y # \end{array}\right) # \end{array} $$ # - $(x, y) = (0, 0)$: $|H| = - 9 < 0 \Rightarrow f (0, 0)$ is a saddle # point. # - $(x, y) = (1, 1)$: $|H| = 36 - 9 > 0$ and $f_{11} = 6 > 0 # \Rightarrow f (1, 1)$ is a relative minimum. # # # Exercise # --- # # Find the relative extrema of $f (x, y) = \exp (- x^2 - y^2)$ if any. # # **1.** Find the critical point(s) as follows: # # \begin{eqnarray*} # \nabla f = \vec{0} & \Longrightarrow & (- 2 x e^{- x^2 - y^2}, - 2 y e^{- # x^2 - y^2}) = (0, 0)\\ # \ & \Longrightarrow & (x, y) = (0, 0) # \end{eqnarray*} # There exists one critical point. # # **2.** Find Hessian matrix: # # $$ \begin{array}{lll} # H & = & \left(\begin{array}{cc} # (4 x^2 - 2) e^{- x^2 - y^2} & 4 x y e^{- x^2 - y^2}\\ # 4 x y e^{- x^2 - y^2} & (4 y^2 - 2) e^{- x^2 - y^2} # \end{array}\right) # \end{array} $$ # # $(x, y) = (0, 0)$: $|H| = 4 > 0$ and $f_{11} (0, 0) = - 2 < 0\Longrightarrow f (0, 0)$ is a relative maximum. # # # # In general, it is not difficulty to find extrema for functions without any # restriction. The following theorem is an extension in the case of all # variables defined within intervals, i.e. $ x^i \in [a^i, b^i]$, # for all $1 \le i \le n$: # # Theorem # --- # Suppose that # # $$ \text{Domain} (f) = \left\{ \mathbf{x} | x^i \in # [a^i, b^i], \text{ for all } 1 \leqslant i \leqslant n \} # \right. $$ # and $f (\mathbf{x})$ is smooth with all the first order derivatives in # domain. Suppose that $f (\mathbf{x})$ attains it global maximum at # $\mathbf{x}=\mathbf{x}^{\ast}$, then one or both following condition(s) # must hold: # 1. $f_i (\mathbf{x}^{\ast}) \le 0$ and $((x^i)^{\ast} - a^i_{}) # f_i (\mathbf{x}^{\ast}) = 0$; # - $f_i (\mathbf{x}^{\ast}) \ge 0$ and $(b^i - (x^i)^{\ast}) # f_i (\mathbf{x}^{\ast}) = 0$. # for all $1 \leqslant i \leqslant n$. # # Proof # --- # # # Since the domain is in the rectangular form, there are only three # possibilities in each direction: # 1. $\mathbf{x}^{\ast}$ is an interior point of domain, then $f_i(\mathbf{x}^{\ast}) = 0$ for any $i$ since it is smooth. # - It is at boundary and suppose that it is increasing, then $(x^i)^{\ast} = b^i$ and $f_i (\mathbf{x}^{\ast}) > 0$. # - It is at boundary and suppose that it is decreasing, then $(x^i)^{\ast} = a^i_{}$ and $f_i (\mathbf{x}^{\ast}) < 0$. # # And these prove this theorem. # Similarly, we have the following theorem to describe the behavior as minimum # of function within bounded region: # # Theorem # --- # Suppose that # $$ \text{Domain} (f) = \left\{ \vec{x} | x_i \in [a_i, # b_i], \text{ for all $1 \leqslant i \leqslant n$:} \} \right. # $$ # and $f (\mathbf{x})$ is smooth with all its first order derivatives. # Suppose that $f (\mathbf{x})$ attains it global minimum at # $\mathbf{x}=\mathbf{x}^{\ast}$, then one or both following condition(s) # must hold: # 1. $f_i (\mathbf{x}^{\ast}) \geqslant 0$ and $((x^i)^{\ast} - a^i_{}) # f_i (\mathbf{x}^{\ast}) = 0$; # - $f_i (\mathbf{x}^{\ast}) \leqslant 0$ and $(b^i - (x^i)^{\ast}) # f_i (\mathbf{x}^{\ast}) = 0$ # # for all $1 \leqslant i \leqslant n$. # # # **Proof** # # # # There are only three possibilities in each direction: # 1. $\mathbf{x}^{\ast}$ is an interior point of domain, then $f_i # (\mathbf{x}^{\ast}) = 0$ for any $i$ since it is smooth. # - It is at boundary and suppose that it is decreasing, then $(x^i)^{\ast} = b^i$ and $f_i (\mathbf{x}^{\ast}) < 0$. # - It is at boundary and suppose that it is increasing, then $(x^i)^{\ast} = a^i_{}$ and $f_i (\mathbf{x}^{\ast}) > 0$. # # And these prove this theorem. # # # # Example # --- # Suppose that one factory inputs its goods from two different supply plants, # $A$ and $B$, with different costs, $4$ and $6$ each respective. And suppose # the price function in the market is the same and is decided as $p (x, y) = # 100 - x - y$ where $x$ and $y$ are the demand functions. Discuss the the # maxima problem due to the following situations: # 1. $0 \leqslant x, y$ # - $0 \leqslant x \leqslant 30$, $0 \leqslant y \leqslant 30$ # # **Solve** # # **1.** The profit function is # # \begin{eqnarray*} # P (x, y) & = & p (x, y) (x + y) - 4 x - 6 y\\ # & = & 100 (x + y) - (x + y)^2 - 4 x - 6 y # \end{eqnarray*} # with all its first derivative: # # \begin{eqnarray*} # P_x (x, y) & = & 100 - 2 (x + y) - 4\\ # P_y (x, y) & = & 100 - 2 (x + y) - 6 # \end{eqnarray*} # Obviously, it is impossible to get the equations simultaneously: # # \begin{eqnarray*} # P_x (x, y) = 0 & \Longrightarrow & 100 - 2 (x + y) - 4 = 0\\ # P_y (x, y) = 0 & \Longrightarrow & 100 - 2 (x + y) - 6 = 0 # \end{eqnarray*} # # since it is absolutely inconsistent. Does it imply no maximum for $P (x,y)$? Certainly not. Think about it: if you can input more cheaper goods, # $4$ each, why not do so? The first derivative test can only be used to # confirm that the maximum does not occur at the point, i.e. satisfying $P_x= P_y = 0$. # # # In this case, we always choose to input from $A$ with cost $4$ each but not from $B$. This just implies: # # \begin{eqnarray*} # y = 0 & \text{ and } & P (x, y) = 100 x - x^2 - 4 x # \end{eqnarray*} # # Then $P (x, y)$ attains its maximum at $(x, y) = (48, 0)$. Note that we have # # \begin{eqnarray*} # \vec{x}^{\ast} = (x^{\ast}, y^{\ast}) = (48, 0) & \Longrightarrow & # (x^{\ast} - 0) P_x (\vec{x}^{\ast}) = 0 \text{ and } P (\vec{x}^{\ast}) = # 0\\ # & \Longrightarrow & P_y (x^{\ast}, y^{\ast}) = - 2 - 2 y^{\ast} < 0 # \text{ and } (y^{\ast} - 0) P_x (\vec{x}^{\ast}) = 0 # \end{eqnarray*} # # **2.** Since the it is beneficial for us to input from $A$, certainly $x$ is equal to $30$, the maximal output from $A$. This concludes # # $$ P (x, y) = P (30, y) = 100 (30 + y) - (30 + y)^2 - 10 - 6 y $$ # and # # \begin{eqnarray*} # P_x (x, y) = 0 & \Longrightarrow & 100 - 2 (x + y) - 4 = 0\\ # P_y (x, y) = 0 & \Longrightarrow & 100 - 2 (x + y) - 6 = 0 # \end{eqnarray*} # # # By the first derivative test, $P (x, y)$ will attains its maxima at $x =30$ (boundary point) and $y = 17$, coming from the fact, $P_y (30, y) =0$. In this case, # # \begin{eqnarray*} # \vec{x}^{\ast} = (x^{\ast}, y^{\ast}) = (30, 17) & \Longrightarrow & (30 # - x^{\ast}) P_x (\vec{x}^{\ast}) = 0 \text{ and } P_x (\vec{x}^{\ast}) < # 0\\ # & \Longrightarrow & P_y (\vec{x}^{\ast}) = 0 # \end{eqnarray*} # # Example # --- # Two kinds of eggs, white and brown, are sold. The daily sales for white eggs # will be $W (x, y) = 30 - 15 x + 3 y$ and daily sales for brown eggs will be # $B (x, y) = 20 - 12 y + 2 x$ where $x, y$ are the sale prices for white and # brown eggs respectively. Then the revenue is # # \begin{eqnarray*} # R (x, y) & = & x W (x, y) + y B (x, y)\\ # & = & x (30 - 15 x + 3 y) + y (20 - 12 y + 2 x)\\ # & = & 30 x + 20 y - 15 x^2 + 5 x y - 12 y^2 # \end{eqnarray*} # The critical point is calculated as follows: # # \begin{eqnarray*} # \nabla R = \vec{0} & \Longrightarrow & (30 - 30 x + 5 y, 20 + 5 x - 24 y) # = (0, 0)\\ # & \Longrightarrow & (x, y) = \left( \frac{164}{139}, \frac{150}{139} # \right) # \end{eqnarray*} # Also the Hessian matrix is as follows: # # \begin{eqnarray*} # H & = & \left(\begin{array}{cc} # - 30 & 5\\ # 5 & - 24 # \end{array}\right) # \end{eqnarray*} # $R_1 = - 30 < 0$ and $|H| > 0$. Then at $(x, y) = \left(\frac{164}{139}, # \frac{150}{139}\right)$, $R (x, y)$ attains its relative maximum and maximum too. # Example # --- # # Suppose that a firm produces one kind of output, $y$, by two inputs, $K$, # called capital, and $L$, called labor. Each unit of capital costs $u$ and # each unit of labor costs $v$. And the production function follows the # Cobb-Douglas relation: # # $$ P (K, L) = A K^{\alpha} L^{\beta} \text{ where } A, \alpha \text{ and } \beta # > 0 $$ # If the price function is constant $p$, find the condition at which the # profit function attains its extremum and determine the condition at which # profit function actually attains its maximum at the critical point. # # **Sol** # # # The profit function, by definition, is # # \begin{eqnarray*} # P (K, L) & = & R (K, L) - C (K, L)\\ # & = & p A K^{\alpha} L^{\beta} - u K - v L # \end{eqnarray*} # By the first order condition, the extremum occurs at which # # \begin{eqnarray*} # 0 = \frac{\partial P}{\partial K} & = p \alpha A K^{\alpha - 1} # L^{\beta} - u & \\ # 0 = \frac{\partial P}{\partial L} & = p \beta A K^{\alpha} L^{\beta - 1} # - v & # \end{eqnarray*} # Then # # \begin{eqnarray*} # & \frac{L}{K} & = \frac{u \beta}{v \alpha}\\ # \Longrightarrow & p \alpha A K^{\alpha - 1} \left( \frac{u \beta}{v\alpha} K \right)^{\beta} & = u\\ # \Longrightarrow & \hat{K} & = \left( \frac{v^{\beta} \alpha^{\beta - # 1}}{p A u^{\beta - 1} \beta^{\beta}} \right)^{\frac{1}{\alpha + \beta -1}}\\ # \Longrightarrow & \hat{L} & = \left( \frac{u^{\alpha} \beta^{\alpha - # 1}}{p A v^{\alpha - 1} \alpha^{\alpha}} \right)^{\frac{1}{\alpha + \beta - 1}} # \end{eqnarray*} # # If $P (K, L)$ attains its maxima at $(\hat{K}, \hat{L})$, then # # \begin{eqnarray*} # & |H| > 0 \text{ and } |H_1 | < 0 & \\ # \Longrightarrow & \frac{\partial^2 P}{\partial L^2} = p \alpha (\alpha -1) A K^{\alpha - 2} L^{\beta} < 0 & \\ # & |H| = (p A)^2 \alpha (\alpha - 1) \beta (\beta - 1) K^{\alpha + \beta - 2} L^{\alpha + \beta - 2} & \\ # & - (p A \alpha \beta)^2 K^{\alpha + \beta - 2} L^{\alpha + \beta - 2}< 0 & \\ # & & \\ # \Longrightarrow & \alpha < 1 \text{ and } \alpha + \beta < 1 & # \end{eqnarray*} # In[ ]: # In[7]: def plot3d(x,y,z): fig = plt.figure() ax = Axes3D(fig) ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap=plt.cm.binary,alpha=0.9) #ax.contour(x, y, z, lw=3, cmap="autumn_r", linestyles="solid", zdir='z',offset=0) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.set_zlim(-7, 25) #ax.scatter3D([1],[1],[0],color=(0,0,0)); ax.arrow(x=1,y=1,dx=0.1,dy=0.1) t=np.linspace(0,2*np.pi,101) xt=np.cos(t) yt=np.sin(t) zt=xt**2-xt*yt+yt**2-xt+yt-6 ax.plot3D(xt,yt,zt) #ax.plot3D(xt,yt,np.sqrt(xt)+np.sqrt(yt)) # In[53]: x=np.linspace(-3,3,101) y=np.linspace(-3,3,101) x,y=np.meshgrid(x,y) f= x**2-x*y+y**2-x+y-6 plot3d(x,y,f) # In[10]: import plotly.graph_objs as go x=np.linspace(-3,3,101) y=np.linspace(-3,3,101) x,y=np.meshgrid(x,y) f= x**2-x*y+y**2-x+y-6 g=x**2-x*y+y**2 t=np.linspace(0,2*np.pi,101) xt=np.cos(t) yt=np.sin(t) zt=xt**2-xt*yt+yt**2-xt+yt-6 surface = go.Surface(x=x, y=y, z=f,opacity=0.9) surface1 = go.Scatter3d(x=xt, y=yt, z=zt, mode = "lines", line = dict(color='orange',width = 5) ) surface2 = go.Scatter3d(x=xt, y=yt, z=0*zt, mode = "lines", line = dict(color='red',width = 5) ) data = [surface,surface1,surface2] fig = go.Figure(data=data) iplot(fig) # Sometimes, what the range of domain does influences the extrema. # # Example # --- # Find the extrema of $f (x, y) = x^2 - x y + y^2 - x + y - 6$ for $(x, y)$ # within the following region $\Omega$ respectively: # 1. $\Omega = \{(x, y) | x^2 + y^2 \le 1\}$; # - $\Omega = \{(x, y) | - 2 \le x, y \le 2\}$; # - $\Omega = \{(x, y) | 0 \le x \le 1, 0 \le y # \leqslant x\}$. # # # **Sol:** First we want to find the critical point(s) as follows: # # \begin{eqnarray*} # \vec{0} & = & (f_1, f_2)\\ # & = & (2 x - y - 1, 2 y - x + 1)\\ # \Longrightarrow & & x = 1 / 3 \text{ and } y = - 1 / 3 # \end{eqnarray*} # # **1.** Critical point is within this region and $f (1 / 3, - 1 / 3) = - 6 # \frac{1}{3}$. And the possible positions for $f (x, y)$ attaining its # extrema is at the boundary, $\partial \Omega = \{(x, y) | x^2 + y^2 = # 1\}$, i.e. $x = \cos \theta$ and $y = \sin \theta$, $0 \le \theta # \le 2 \pi$. On the boundary, # # \begin{eqnarray*} # f (x, y) & = & f (\cos \theta, \sin \theta)\\ # & = & \cos^2 \theta - \sin \theta \cos \theta + \sin^2 \theta - \cos # \theta + \sin \theta - 6\\ # & = & - \sin \theta \cos \theta - \cos \theta + \sin \theta - 5\\ # \frac{d f}{d \theta} = 0 & \Longrightarrow & \sin^2 \theta - \cos^2 # \theta + \sin \theta + \cos \theta = 0\\ # & \Longrightarrow & (\sin \theta + \cos \theta) (\sin \theta - \cos # \theta + 1) = 0 # \end{eqnarray*} #   **a.** $\sin \theta + \cos \theta = 0$: $\theta = 3 \pi / 4$ and $7 \pi / # 4$, this implies # # \begin{eqnarray*} # f \left( \cos \frac{3 \pi}{4}, \sin \frac{3 \pi}{4} \right) & = & - # \sin \frac{3 \pi}{4} \cos \frac{3 \pi}{4} - \cos \frac{3 \pi}{4} + # \sin \frac{3 \pi}{4} - 5 = - 4 \frac{1}{2}\\ # f \left( \cos \frac{7 \pi}{4}, \sin \frac{7 \pi}{4} \right) & = & - 4 # \frac{1}{2} # \end{eqnarray*} #   **b.** $\sin \theta - \cos \theta + 1 = 0$: $\theta = 0$ and $3 \pi / 2$, # this implies # # \begin{eqnarray*} # f (\cos 0, \sin 0) & = & - 6\\ # f \left(\cos \frac{3 \pi}{2}, \sin \frac{3 \pi}{2}\right) & = & - 6 # \end{eqnarray*} # These conclude: maximum is $- 4 \frac{1}{2}$ and minimum is $- 6 # \frac{1}{3}$ at $(x, y) = (1 / 3, - 1 / 3)$. # # **2.** In this square case, $\partial \Omega$ contains four components:
#   **a.** $I_1 = \{(x, y) | - 2 \leqslant x \leqslant 2, y = - 2\}$;
#   **b.** $I_2 = \{(x, y) | - 2 \leqslant y \leqslant 2, x = 2\}$;
#   **c.** $I_3 = \{(x, y) | - 2 \leqslant x \leqslant 2, y = 2\}$;
#   **d.** $I_4 = \{(x, y) | - 2 \leqslant y \leqslant 2, x = - 2\}$;
# # - For $f (x, y) |_{I_1} = f (x, - 2) = x^2 + x - 4, - 2 \leqslant x \leqslant 2$: # - maximum: $2$ at $(x, y) = (2, - 2)$; # - minimum: $- 4 \frac{1}{4}$ at $(x, y) = (- 1 / 2, - 2)$. # - $f (x, y) |_{I_2} = f (2, y) = y^2 - y - 4^{}, - 2\leqslant y \leqslant 2$: # - maximum: 2 at $(x, y) = (2, - 2)$; # - minimum: $- 4 \frac{1}{4}$ at $(x, y) = (2, 1 / 2)$. # - $f (x, y) |_{I_3} = f (x, 2) = x^2 - 3 x, - 2 \leqslant x\leqslant 2$: # - maximum: 10 at $(x, y) = (- 2, 2)$; # - minimum: $- 9 / 4$ at $(x, y) = (3 / 2, 2)$. # - $f (x, y) |_{I_4} = f (- 2, y) = y^2 + 3 y, - 2 \leqslant y \leqslant 2$: # - maximum: 10 at $(x, y) = (- 2, 2)$; # - minimum: $- 9 / 4$ at $(x, y) = (- 2, - 3 / 2)$. # # These conclude: maximum is $10$ at $(-2,2)$ and minimum is $- 6 # \frac{1}{3}$ at $(x, y) = (1 / 3, - 1 / 3)$. # # **3.** the last case, we have these conclusions: maximum is $10$ at $(x, y) = (- 2, # 2)$ and minimum is $- 6 \frac{1}{3}$ at $(x, y) = (1 / 3, - 1 / 3)$. # Since critical point is not included. Then the extrema might # attain at the boundary $\partial \Omega$ as follows: # - $I_1 = \{(x, y) | 0 \leqslant x \leqslant 1, y = 0\}$; # - $I_2 = \{(x, y) | 0 \leqslant y \leqslant 1, x = 1\}$; # - $I_3 = \{(x, y) | 0 \leqslant x \leqslant 1, y = x\}$; # # and # # - $f (x, y) |_{I_1} = f (x, 0) = x^2 - x - 6, 0 \leqslant x\leqslant 1$: # - maximum : - 6 at $(x, y) = (0, 0)$ ; # - minimum : $- 6 \frac{1}{4}$ at $(x, y) = (1 / 2, 0)$. # - $f (x, y) |_{I_2} = f (1, y) = y^2 - 6, 0 \leqslant y\leqslant 1$: # - maximum: - 5 at $(x, y) = (1, 1)$; # - minimum: - 6 at $(x, y) = (0, 1)$. # - $f (x, y) |_{I_3} = f (x, x) = x^2 - 6, 0 \leqslant x \leqslant 1$: # - maximum: - 5 at $(x, y) = (1, 1)$; # - minimum: - 6 at }$(x, y) = (0, 0)$. # # These conclude: # maximum is $- 5$ at $(x, y) = (1, 1)$ and minimum is $- 6 \frac{1}{4}$ at # $(x, y) = (1 / 2, 0)$ . # # Example # --- # Find the extrema of $f (x, y, z) = (x - 1)^2 + (y - 1)^2 + (z - 1)^2$ for $x+ y + z \le 4$ and $0 \leqslant x, y, z$. # # The critical point is $(1, 1, 1)$ (with $f (1, 1, 1) = 0$) since # $$ \nabla f = 2 (x - 1, y - 1, z - 1) = \vec{0} $$ # and it is within the domain. Since $f (x, y, z) \geqslant 0$, then $f (x, y, # z)$ attain its minimum at $(1, 1, 1)$. Another positions at which $f (x, y, # z)$ possibly attains its extrema (or maximum) are on the boundary: # - $I_1 : \{(x, y, 0) | x + y \leqslant 4, x, y \geqslant 0\}$; # - $I_2 : \{(x, 0, z) | x + z \leqslant 4, x, z \geqslant 0\}$; # - $I_3 : \{(0, y, z) | y + z \leqslant 4, y, z \geqslant 0\}$; # - $I_4 : \{(x, y, z) | x + y + z = 4, x, y, z \geqslant 0\}$ # # # # By the symmetry, the maximum in $I_1, I_2, I_3$ are the same. Therefore only # $I_1$ and $I_4$ are necessarily to be considered: # 1. On $I_1$: $g (x, y) = f (x, y, 0) = (x - 1)^2 + (y - 1)^2 + 1$ # - critical point is $(1, 1)$ (with $g (1, 1) = 1$) since # $$ \nabla g = 2 (x - 1, y - 1) = \vec{0} $$ # - boundary points: # - $0 \leqslant x \leqslant 4, y = 0$: $g (x, y) = (x - 1)^2 + 2$ # implies that maximum is 11 at $x = 4$. # - $0 \leqslant y \leqslant 4, x = 0$: $g (x, y) = (y - 1)^2 + 2$ # implies that maximum is 11 at $y = 4$. # - $x + y = 4, x, y \geqslant 0$: $g (x, y) = 2 x^2 - 8 x + 11$, $0 # \leqslant x \leqslant 4$ implies that maximum is 11 at $x = 0$ or 4. # - On $I_4$: $f (x, y, z) = (x - 1)^2 + (y - 1)^2 + (z - 1)^2$ with $x # + y + z = 4, x, y, z \geqslant 0$. This can be solved the following # technique, Lagrange multiplier, introduced in the following section: # # Let # # \begin{eqnarray*} # L (x, y, z, \lambda) & = & f (x, y, z) + \lambda (4 - x - y - z)\\ # & = & (x - 1)^2 + (y - 1)^2 + (z - 1)^2 + \lambda (4 - x - y - z) # \end{eqnarray*} # and # # \begin{eqnarray*} # \nabla L = \vec{0} & \Longrightarrow & 2 (x - 1) = 2 (y - 1) = 2 (z - # 1) = \lambda # \end{eqnarray*} # By symmetry, $x = y = z$, then # # \begin{eqnarray*} # x + y + z = 4 & \Rightarrow & x = y = z = 4 / 3 # \end{eqnarray*} # This implies $f (x, y, z)$ attains its minimum $1 / 3$ (why?) at this point $(4 / 3, 4 / 3, 4 / 3)$, but not maximum. # # # Therefore the maximum is 11 and minimum is 0. # # # In[87]: x,y,z,l=symbols('x y z l') f=(x-1)**2+(y-1)**2+(z-1)**2 cond=4-x-y-z F=f+l*cond solve(grad(F,[x,y,z]),[x,y,z]) # Exercise # --- # Suppose that $f (x, y) = 3 x + 4 y$. Find the extrema of $f (x, y)$ in the # following regions $\Omega$ respectively: # 1. $\Omega = \{(x, y) | - 2 \leqslant x, y \leqslant 2\}$; # - $\Omega = \{(x, y) | x^2 + y^2 \leqslant 2^2 \}$; # # # 1. # \begin{eqnarray*} # \partial \Omega & = & \{y = - 2\} \cup \{x = 2\} \cup \{y = 2\} \cup \{x = # - 2\}\\ # & = & I_1 \cup I_2 \cup I_3 \cup I_4 # \end{eqnarray*} # And the extrema appear at the ends, i.e. the four corners of the region, ($- # 2, - 2), (2, - 2), (2, 2)$ and (-2,2). And the functions values at these # points are $- 14, - 2, 14$ and $2$. Therefore, the maximum is $14$ and # minimum is $- 14$ # - Since $\partial \Omega = \{x^2 + y^2 = 4\}$, consider the Lagrangian # function: # $$ L (x, y, \lambda) = f (x, y) + \lambda (4 - x^2 - y^2) $$ # Then # # \begin{eqnarray*} # \nabla L = \vec{0} & \Longrightarrow & (3 - 2 \lambda x, 4 - 2 \lambda y, # 4 - x^2 - y^2) = \vec{0}\\ # & \Longrightarrow & x = \frac{3}{2 \lambda}, y = \frac{2}{\lambda}\\ # & \Longrightarrow & y = \frac{4}{3} x\\ # & \Longrightarrow & (x, y) = \left( \pm \frac{6}{5}, \pm \frac{8}{5} # \right) # \end{eqnarray*} # Then the maximum is $f (6 / 5, 8 / 5) = 10$ and minimum is $f (- 6 / 5, - 8 # / 5) = - 10$. # # # Exercise # --- # Suppose that $f (x, y) = x^2 + y^2$. Find the extrema of $f (x, y)$ in the # following regions $\Omega$ respectively: # 1. $\Omega = \{(x, y) | - 2 \leqslant x, y \leqslant 2\}$; # - $\Omega = \{(x, y) | 3 x + 4 y \leqslant 5, 0 \leqslant x, y\}$; # # **1.** # # \begin{eqnarray*} # \partial \Omega & = & \{y = - 2\} \cup \{x = 2\} \cup \{y = 2\} \cup \{x = # - 2\}\\ # & = & I_1 \cup I_2 \cup I_3 \cup I_4 # \end{eqnarray*} # And the extrema appear at the ends, i.e. the four corners of the region, ($- # 2, - 2), (2, - 2), (2, 2)$ and (-2,2). The functions values at these points # are all 8 and $0 \leqslant x^2 + y^2$. Therefore, the maximum is $8$ and # minimum is $0$. # # **2.** Since # # \begin{eqnarray*} # \partial \Omega & = & \{y = 0, 0 \leqslant x \leqslant 5 / 3\} \cup \{x = # 0, 0 \leqslant y \leqslant 5 / 4\} \cup \{3 x + 4 y = 5\}\\ # & = & I_1 \cup I_2 \cup I_3 # \end{eqnarray*} # Consider the Lagrangian function: # $$ L (x, y, \lambda) = f (x, y) + \lambda (5 - 3 x - 4 y) $$ # Then # 1. $(x, y) \in I_1$: $f (x, y) = x^2$ and $0 \leqslant x \leqslant 5 / # 3$. Then maximum is $25 / 9$ and minimum is 0. # - $(x, y) \in I_2$: $f (x, y) = y^2$ and $0 \leqslant y \leqslant 5 / # 4$. Then maximum is $25 / 16$ and minimum is 0. # - $(x, y) \in I_3$ # # \begin{eqnarray*} # \nabla L = \vec{0} & \Longrightarrow & (2 x - 3 \lambda x, 2 y - 4 \lambda # y, 5 - 3 x - 4 y) = \vec{0}\\ # & \Longrightarrow & x = \frac{2}{3 \lambda}, y = \frac{1}{2 \lambda}\\ # & \Longrightarrow & y = \frac{3}{4} x\\ # & \Longrightarrow & (x, y) = \left( \frac{5}{6}, \frac{5}{8} \right) # \end{eqnarray*} # Then the value of $f (x, y)$ is $625 / 576$ and is the minimum on $I_3$ # (why?). These conclude that minimum is 0 and maximum is 25/9. # # P.1125 # --- # Classify the types of extrema or saddle point of $f(x,y)$:
# **14. ** $f(x,y)=xy((3-x-y)$ # In[12]: fig = plt.figure(figsize=(12,6)) ax = fig.add_subplot(1, 1, 1, projection='3d') x=np.linspace(-1,3.1,101) y=np.linspace(-1,3.1,101) f=x*y*(3-x-y) x,y=np.meshgrid(x,y) ax.plot_surface(x,y,f) ax.set_title("$f(x,y)=x y (3-x-y)$") # In[6]: from sympy import hessian,symbols,solve,diff,pprint grad = lambda func, vars :[diff(func,var) for var in vars] x,y,z=symbols("x y z",real=True) f=x*y*(3-x-y) cpts=solve(grad(f,[x,y]),[x,y]) H=hessian(f,[x,y]); #H2=hessian(f,[x,y]) H_det=H.det(); #H2_det=H2.det() #print(cpts,H_det,H2_det) for cpt in cpts: print(cpt) det_H_val=H_det.subs({x:cpt[0],y:cpt[1]}) #det_H2_val=H2_det.subs({x:cpt[0],y:cpt[1]}) print("the critical point is (%s,%s) and det(H2)=%s" %(cpt[0],cpt[1],det_H_val)) # In[7]: def criticaltype(f): cpts=solve(grad(f,[x,y]),[x,y]) H=hessian(f,[x,y]); H_det=H.det(); print("Hessian Matrix\n---") pprint(H) #H2_det=H.det() num=1 if len(cpts)==0: print(" no critical point!") elif (type(cpts)==dict): """ If only one critical point, return {x:a,y:b} --- dict, if more than one point return {(a,b),(c,d),...} --- list """ cx=cpts[x] cy=cpts[y] print("only one critical (x,y)=(%s,%s)" %(cx,cy)) delta2=H_det.subs({x:cx,y:cy}) if delta2<0: print(" |H|=%s<0: Saddle point here." %delta2) elif delta2==0: print(" |H|=0: No conclusion.") else: f1=diff(f,x,2).subs({x:cx,y:cy}) if f1>0: print(" |H|=%s>0, fxx=%s>0: local minimum here." %(delta2,f1)) else: print(" |H|=%s>0, fxx=%s<0: local maximum here." %(delta2,f1)) else: for i in cpts: cx=i[0] cy=i[1] print("%d. critical (x,y)=(%s,%s)" %(num,cx,cy)) delta2=H_det.subs({x:cx,y:cy}) if delta2<0: print(" |H|=%s<0: Saddle point here." %delta2) elif delta2==0: print(" |H|=0: No conclusion.") else: f1=diff(f,x,2).subs({x:cx,y:cy}) if f1>0: print(" |H|=%s>0, fxx=%s>0: local minimum here." %(delta2,f1)) else: print(" |H|=%s>0, fxx=%s<0: local maximum here." %(delta2,f1)) #print(H_det) num+=1 # In[28]: f=x*y*(3-x-y) criticaltype(f) # 1. $\nabla f =(y(3-x-y)-xy,x(3-x-y)-xy)=(y(3-2x-y),x(3-x-2y))=(0,0)$ # - Hessian matrix # \begin{eqnarray*} # H & = & \left(\begin{array}{cc} # - 2y & 3-2x-2y\\ # 3-2x-2y & - 2x # \end{array}\right) # \end{eqnarray*} # - critical values:
# a. $y=0$ implies $x=0$ or $3-x=0$, i.e. $(0,0),(3,0)$; ($H<0$)
# b. $3-2x-y=0$ implies # - $x=0$ and $y=3$, ($H<0$) # - $3-x-2y=0$ implies $(x,y)=(1,1)$ ($H>0,a<0$) # # **16. ** $f(x,y)=4y/(x^2+y^2+1)$ # In[10]: fig = plt.figure(figsize=(12,6)) ax = fig.add_subplot(1, 1, 1, projection='3d') x=np.linspace(-2,2,101) y=np.linspace(-2,2,101) f=4*y/(1+x*x+y*y) x,y=np.meshgrid(x,y) ax.plot_surface(x,y,f,alpha=0.6) ax.set_title("$f(x,y)=4y/(1+x^2+y^2)$") # In[29]: f=4*y/(x**2+y**2+1) criticaltype(f) # 1. $\nabla f =(-8xy/(x^2+y^2+1)^2,(4x^2-4y^2+4)/(x^2+y^2+1)^2)=(0,0)$ # - Hessian matrix # \begin{eqnarray*} # H & = & \frac{8}{(3x^2+y^2+1)^3}\left(\begin{array}{cc} # y(x^2-1-y^2) & x(3y^2-1-x^2)\\ # x(3y^2-x^2-1) & y(x^2-3y^2+1) # \end{array}\right) # \end{eqnarray*} # - critical values: $x=0$ implies $y=\pm1$, i.e. $(0,1),(0,-1)$; ($H>0$)
# a. $(x,y)=(0,1)$: $H>0,a<0$ # b. $(x,y)=(0,-1)$: $H>0,a>0$ # # **36. ** Find the absolute extrema of $f(x,y)=3x^2+2xy+y^2$ on the triangle with vertices $(-2,-1),(1,-1),(1,2)$. # In[4]: fig = plt.figure(figsize=(6,6)) ax = Axes3D(fig) X = np.linspace(-2, 1, 30) X1 = np.linspace(-2, 1, 100) X2 = np.linspace(-2, 1, 100) Y2 = X2+1 Y = np.linspace(-1, 2, 30) Y1 = np.linspace(-1, 2, 100) Zs = 3*X1**2-2*X1+1 Zt = 3+2*Y1+Y1**2 X,Y=np.meshgrid(X,Y) func= 3*X*X+2*X*Y+Y*Y base=0*X Z2 = 3*X2*X2+2*X2*Y2+Y2*Y2 ax.scatter(X1,0*X1-1,Zs, color="red",alpha=0.9) ax.scatter(0*Y1+1,Y1,Zt,color="red",alpha=0.9) ax.scatter(X2,Y2, Z2,color="red",alpha=0.9) ax.plot_surface(X,Y, func, rstride=1, cstride=1, cmap=cm.jet,alpha=0.4) ax.plot_surface(X,Y, base, rstride=1, cstride=1, cmap=cm.jet,alpha=0.2) # In[30]: f=3*x**2+2*x*y+y**2 criticaltype(f) # In[30]: f.subs({x:0,y:0}) # In[31]: #L1: (-2,-1) to (1,-1), x in [-2,1] f1=f.subs({y:-1}) solve(diff(f1,x),x) # In[32]: for i in [-2,1/3,1]: print(f1.subs({x:i})) # In[19]: #L2: (1,-1) to (1,2), y in [-1,2] f2=f.subs({x:1}) solve(diff(f2,y),y) # In[20]: for i in [-1,2]: print(f2.subs({y:i})) # In[21]: #L3: (1,2) to (-2,-1), y-x=1 for x in [-2,1] f3=f.subs({x:x,y:x+1}) solve(diff(f3,x),x) # In[22]: for i in [-2,-1/3,1]: print(f3.subs({x:i})) # These conclude: maximum is $17$, munimum is $0$. # In[ ]: # **40. ** Find the absolute extrema of $f(x,y)=4x^2+2x+y^2-y$ on the elipse $4x^2+y^2\le1$. # In[8]: fig = plt.figure(figsize=(6,6)) ax = Axes3D(fig) X = np.linspace(-1, 1, 100) t = np.linspace(0, 2*np.pi, 100) Xt = np.cos(t)/2 Yt = np.sin(t) Y = np.linspace(-1, 1, 30) Y1 = np.linspace(-1, 1, 100) X,Y=np.meshgrid(X,Y) func= 4*X*X+2*X+Y*Y-Y base=0*X ax.scatter(Xt,Yt,4*Xt**2+2*Xt+Yt**2-Yt, color="red",alpha=0.9) ax.plot_surface(X,Y, func, rstride=1, cstride=1, cmap=cm.jet,alpha=0.4) ax.plot_surface(X,Y, base, rstride=1, cstride=1, cmap=cm.jet,alpha=0.2) ax.view_init(azim=-110,elev=25) # In[31]: f=4*x**2+y**2+2*x-y criticaltype(f) # In[34]: f.subs({x:-1/4,y:1/2}) # In[35]: # boundary from sympy import sin,cos,pi t=symbols("t",real=True) ft=f.subs({x:cos(t)/2,y:sin(t)}) # In[36]: cpts=solve(diff(ft,t),t) for cpt in cpts: fval=ft.subs({t:cpt}) xt=cos(cpt)/2 yt=sin(cpt) print("f(%s,%s)=%s" %(xt,yt,fval)) # These conclude: maximum is $1+\sqrt2$, munimum is $-0.5$. # **44.** Find the point on the surface $xy^2z=4$ that are closest to the origin and what is the shortest distance between them? # In[32]: f=x**2+y**2+(4/x**2/y)**2 criticaltype(f) # **62.** Let $f(x,y)=x^2-y^2+2xy+2$. # 1. no extrema since $f(x,y)\to\infty$, if $x\to\infty,y=0$, and $f(x,y)\to-\infty$, if $y\to\infty,x=0$. # - Find extrema on $D=\{x^2+4y^2\le4\}$ # In[34]: f=x**2-y**2+2*x*y+2 criticaltype(f) # In[37]: ft=f.subs({x:2*cos(t),y:sin(t)}) cpts=solve(diff(ft,t),t) print(cpts) for cpt in cpts: fval=ft.subs({t:cpt}) xt=2*cos(cpt) yt=sin(cpt) print("f(%s,%s)=%s" %(xt,yt,fval)) # Note # --- # For $(x,y)\in\partial D$, # \begin{eqnarray} # f(x,y)&=&f(2\cos t,\sin t)\\ # &=&4\cos^2t-\sin^2t +4\sin t\cos t+2 \\ # &=& 2(1+\cos 2t)-\frac{1}{2}(1-\cos2t)+2\sin2t+2\\ # &=&\frac{5}{2}\cos2t+2\sin2t-\frac{3}{2}\\ # \Rightarrow && -\sqrt{(5/2)^2+2^2}+2\le f\le\sqrt{(5/2)^2+2^2}+2 # \end{eqnarray} # Optimization Problem with Constraints # --- # # Theorem # --- # If a relative extrema of $f (x, y)$ and $g (x, y) = 0$ occurs at $(x, y)$, # then there exists a $\lambda$ for which $(x, y, \lambda)$ is the critical # point, $(a,b)$, of $L = f (x, y) + \lambda g (x, y)$, i.e.: # $$ \nabla f(a,b)+\lambda\nabla g(a,b)=\mathbf{0}$$ # # This function is called # **Lagrangian** of $f (x)$ and $g (x)$. # # # # In real world, Lagrangian is more realistic than other kinds of optimization # problem: finding extrema under resources limited. # # For general case, $\mathbf{x}\in \mathbb{R}^n$, the extrema of $f(\mathbf{x}$ with constraint $g(\mathbf{x}=0$ at $\mathbf{x}_0$ should satisfy the following: # $$ \nabla f(\mathbf{x}_0)+\lambda\nabla g(\mathbf{x}_0)=\mathbf{0}$$ # where $\lambda\ne0$ and $\nabla g(\mathbf{x}_0)\ne\mathbf{0}$. # Example # --- # Suppose that the Cobb-Douglas function is # $$ P (x, y) = 100 x^{1 / 4} y^{3 / 4} $$ # where $x$ is the unit of labor and $y$ is the unit of capital. Each unit of # labor costs $200$ and each of capital costs 100. If the total of 800 worth # of labor and capital is to be used, Find the maximum of $P (x, y)$. # # First note: # # the critical point at which $P (x, y)$ attains it maximum is also the # critical point for $\ln P (x, y)$ that attains its maximum. # # # Since the constraint is # # $$ 200 x + 100 y = 800 $$ # consider the Lagrangian function: # # \begin{eqnarray*} # L (x, y, \lambda) & = & \ln P (x, y) + \lambda (800 - 200 x - 100 y)\\ # & = & \ln 100 + \frac{1}{4} \ln x + \frac{3}{4} \ln y + \lambda (800 - # 200 x - 100 y) # \end{eqnarray*} # # Note: The critical value of $P (x, y)$ is # also critical value of $\ln P (x, y)$!} # # Now the critical point(s) is as follows: # # \begin{eqnarray*} # \vec{0} & = & \nabla L (x, y, \lambda)\\ # & = & \left( \frac{\partial L}{\partial x}, \frac{\partial L}{\partial # y}, \frac{\partial L}{\partial \lambda} \right)\\ # & = & \left( \frac{1}{4 x} - 200 \lambda, \frac{3}{4 y} - 100 \lambda, # 800 - 200 x - 100 y \right)\\ # \Longrightarrow & & x = \frac{1}{800 \lambda}, y = \frac{3}{400 \lambda} # (\text{ i.e. } y = 6 x)\\ # \Longrightarrow & & x = 1 \text{ and } y = 6 # \end{eqnarray*} # # $(x, y) = (1, 6)$ is the only one critical point. Since $0 \leqslant x, y\le 8$, $P (x, y)$ has to be a maximum in such closed region. # Therefore, $P (x, y)$ attains it maximum at $(1, 6)$. # # # In[112]: x,y,z,l=symbols('x y z l') expf=100 f=log(100)+log(x)/4+3*log(y)/4 cond=800-200*x-100*y F=f+l*cond cpts=solve(grad(F,[x,y,z]),[x,y,z]) l0=solve(cond.subs({x:cpts[x],y:cpts[y]}),l) print('Function of %s with constraint %s:\n' %('100 x**(1/4)y**(3/4)',cond)) print('critical point (x,y) is (%s,%s)' %(cpts[x].subs(l,l0[0]),cpts[y].subs(l,l0[0]))) # Implement Python Lagrange's Multiplier solver # --- # In[8]: def lagrangian(func,X,conditions,solvable=True): l,m=symbols("lambda mu") if len(X)==2 and len(conditions)==1: L=func+l*conditions[0] cpts=solve([diff(L,x),diff(L,y),conditions[0]],[x,y,l]) print("Function, %s, subject to %s=0\n---" %(func,conditions[0])) elif len(X)==3 and len(conditions)==1: L=func+l*conditions[0] cpts=solve([diff(L,x),diff(L,y),diff(L,z),conditions[0]],[x,y,z,l]) print("Function, %s, subject to %s=0\n---" %(func,conditions[0])) else: L=func+l*conditions[0]+m* conditions[1] cpts=solve([diff(L,x),diff(L,y),diff(L,z),conditions[0],conditions[1]],[x,y,z,l,m]) print("Function, %s, subject to %s=0 and %s=0\n---" %(func,conditions[0],conditions[1])) i=1 vals=[] if solvable: for cpt in cpts: if len(X)==2: funcVal=func.subs({x:cpt[0],y:cpt[1]}) print("%d֯ ). f = %s = %s at critical value (x,y)=(%s,%s)" %(i,func,funcVal,cpt[0],cpt[1])) else: funcVal=func.subs({x:cpt[0],y:cpt[1],z:cpt[2]}) print("%d֯ ). f = %s = %s at critical value (x,y,z)=(%s,%s,%s)" %(i,func, funcVal,cpt[0],cpt[1],cpt[2])) vals.append(funcVal) i+=1 print("---\n") print("Maximum on the boundary is %s" %max(vals)) print("Minimum on the boundary is %s" %min(vals)) else: print(cpts) # Example # --- # Suppose you wishes to allocate your available time of $16$ hours in this # week between quizzes, English and Calculus, held in the next week. What # would you do in such way to maximize your grade average? # # **Solution** # # Suppose that # 1. $f (t_1) = 20 + 20 \sqrt{t_1} $: the time will be spent for # English course with $t_1$ hour per week, # - $g (t_2) = 50 + 3 t$ : the time will be spent for Calculus course # with $t_2$ hour per week. # # Then the problem is turned to be: # # \begin{eqnarray*} # \text{Maximize } S (t_1, t_2) & = & \frac{f (t_1) + g (t_2)}{2}\\ # \text{ subject to } & & t_1 + t_2 = 16 # \end{eqnarray*} # Consider the Lagrangian: # $$ L (t_1, t_2) = 20 + 20 \sqrt{t_1} + 50 + 3 t_2 + \lambda (16 - t_1 - # t_2) $$ # The extremum occurs at the place that satisfies: # # \begin{eqnarray*} # \frac{\partial L}{\partial t_1} = 0, & \frac{\partial L}{\partial t_2} = # 0, & \frac{\partial L}{\partial \lambda} = 0. # \end{eqnarray*} # And these imply: # # \begin{eqnarray*} # & \frac{10}{\sqrt{t_1}} - \lambda = 0, & 3 - \lambda = 0\\ # \Longrightarrow & t_1 = \left( \frac{10}{3} \right)^2 & \text{ and } t_2 = # 16 - \left( \frac{10}{3} \right)^2 # \end{eqnarray*} # How do I know at which the maximum occurs? Since $S (t_1, t_2)$ is # continuous for both $t_1$ and $t_2$ are in bounded intervals, the function # obtains its maximum and minimum. Comparing with the function values at # boundary, $S (t_1, t_2)$ will obtains its maximum at $(t_1, t_2) = (1,15)$ with the constraint $t_1 + t_2 = 16$. # # Theorem (Heron's formulae) # --- # Suppose that The lengths of sides of triangle are $x, y$ # and $z$ respectively and $x + y + z = l$. Then the area of this triangle is # $\sqrt{s (s - x) (s - y) (s - z)}$ where $s = l / 2$. # # # Example # --- # Suppose that the perimeter is $24$. Find the dimension of this triangle such # that it owns maximum area. # # Suppose $x, y, z$ are the lengths of sides of this triangle and let $A$ be # its area. Then # # \begin{eqnarray*} # & \text{Maximize} & A = \sqrt{12 (12 - x) (12 - y) (12 - z)} \text{ with } # x + y + z = 24\\ # \Longrightarrow & \text{Maximize } & 12 (12 - x) (12 - y) (12 - z) # \text{ with } x + y + z = 24\\ # \Longrightarrow & \text{Maximize } & L (x, y, z, \lambda) = \ln (12 (12 - # x) (12 - y) (12 - z)) + \lambda (24 - x - y - z) # \end{eqnarray*} # Since # $$ L (x, y, z, \lambda) = \ln 12 + \ln (12 - x) + \ln (12 - y) + \ln (12 - # z) + \lambda (24 - x - y - z) $$ # then the critical value of $L (x, y, z, \lambda)$ can be found by the # following steps: # # \begin{eqnarray*} # \vec{0} & = & \nabla L (x, y, z, \lambda)\\ # & = & \left( \frac{\partial L}{\partial x}, \frac{\partial L}{\partial # y}, \frac{\partial L}{\partial z}, \frac{\partial L}{\partial \lambda} # \right)\\ # & = & \left( - \frac{1}{12 - x} - 1, - \frac{1}{12 - y} - 1, - # \frac{1}{12 - z} - 1, 24 - x - y - z \right) # \end{eqnarray*} # This implies that $x = y = z = 8$, i.e. this triangle is equilateral. # Exercise # --- # Assume that $P (x, y) = 100 x^{1 / 4} y^{3 / 4}$. Then $\frac{\partial # P}{\partial x} = \frac{25 y^{\frac{3}{4}}}{x^{\frac{3}{4}}}$ and # $\frac{\partial P}{\partial y} = \frac{75 # x^{\frac{1}{4}}}{y^{\frac{1}{4}}}$. # 1. $\frac{\partial P}{\partial x} (1, 6) = 25 \sqrt[4]{6^3}$ # - $\frac{\partial P}{\partial y} (1, 6) = 75 / \sqrt[4]{6^{}}$ # - $\frac{\partial P}{\partial x} (1, 6) / \frac{\partial P}{\partial # y} (1, 6) = 25 \sqrt[4]{6^3} / (75 / \sqrt[4]{6^{}}) = 6 / 3 = 2$ # - Let $F (x, y) = P (x, y) + \lambda (80 - 20 x - 10 y)$. Then # # $$\text{ } 0 = \frac{\partial F}{\partial x} = \frac{25 # y^{\frac{3}{4}}}{x^{\frac{3}{4}}} - 20 \lambda \text{ and } 0 = # \frac{\partial F}{\partial y} = \frac{75 # x^{\frac{1}{4}}}{y^{\frac{1}{4}}} - 10 \lambda $$ # These imply $y = 6 x. \text{Therefore}$ $F (x, y)$ attains its maximum # under the constraint $20 x + 10 y = 80$ as $x = 10$ and $y = 60$. # Example # --- # Find the extrema of $f(x,y)=x^2-2y$ subject to $x^2+y^2=9$. # # **1.** Let $L=f+\lambda(9-x^2-y^2)=x^2-2y+\lambda(9-x^2-y^2)$.
# **2.** # \begin{eqnarray} # \vec{0} & = & \nabla L (x, y, \lambda)\\ # & = & \left( \frac{\partial L}{\partial x}, \frac{\partial L}{\partial # y}, \frac{\partial L}{\partial \lambda} # \right)\\ # & = & \left( 2x-2\lambda x, -2 - 2\lambda y , 9-x^2-y^2 \right) # \end{eqnarray} # **3.** # - $x=0\to 0^2+y^2=9\to y=\pm3$ # - $\lambda=1\to y=-1\to x=\pm2\sqrt2$ # - $f(0,-3)=6,f(0,3)=-6 (\min),f(\pm2\sqrt2,-1)=10 (\max)$ # Example # --- # Find the extrema of $f(x,y)=2x^2+y^2-2y+1$ subject to $x^2+y^2\le4$. # # **0.** critical point: # $$\nabla f=(0,0)\to(x,y)=(0,1)$$ # and $f(0,1)=0$. # # **1.** Let $L=f+\lambda(4-x^2-y^2)=2x^2+y^2-2y+1+\lambda(4-x^2-y^2)$.
# **2.** # \begin{eqnarray} # \vec{0} & = & \nabla L (x, y, \lambda)\\ # & = & \left( \frac{\partial L}{\partial x}, \frac{\partial L}{\partial # y}, \frac{\partial L}{\partial \lambda} # \right)\\ # & = & \left( 4x-2\lambda x, 2y-2 - 2\lambda y , 4-x^2-y^2 \right) # \end{eqnarray} # **3.** # - $x=0\to 0^2+y^2=4\to y=\pm2$ # - $\lambda=2\to y=-1\to x=\pm\sqrt3$ # - $f(0,1)=0$ (minimum), $f(0,-2)=9,f(0,2)=1,f(\pm\sqrt3,-1)=10$ (maximum). # Example (With two constraints) # --- # Find the extrema of $f(x,y,z)=3x+2y+4z$ subject to $x-y+2z=1$ and $x^2+y^2=4$. # # **1.** Let $L=f+\lambda(1-x+y-2z)+\mu(4-x^2-y^2)=3x+2y+4z+\lambda(1-x+y-2z)+\mu(4-x^2-y^2)$.
# **2.** Find critical point(s): # \begin{eqnarray} # \vec{0\!} & = & \nabla L (x, y, z,\lambda,\mu)\\ # & = & \left( \frac{\partial L}{\partial x}, \frac{\partial L}{\partial y}, # \frac{\partial L}{\partial z}, \frac{\partial L}{\partial \lambda}, # \frac{\partial L}{\partial\mu} # \right)\\ # & = & \left( 3-\lambda -2\mu x, 2+\lambda-2\mu y,4-2\lambda , ...,...\right) # \end{eqnarray} # **3.** # - $\lambda=2\to x=1/(2\mu) \text{ and }y=2/\mu$ # - $x^2+y^2=4\to \mu=\pm\sqrt{17}/4\to(x,y,z)=\left(\pm2/\sqrt{17},\pm8/\sqrt{17},\frac{1}{2}\left(1\pm\frac{6}{\sqrt{17}}\right)\right)$ # - Maximum $f\left(2/\sqrt{17},8/\sqrt{17},\frac{1}{2}\left(1+\frac{6}{\sqrt{17}}\right)\right)=2(1+\sqrt{17})$, # - Minimum $f\left(-2/\sqrt{17},-8/\sqrt{17},\frac{1}{2}\left(1-\frac{6}{\sqrt{17}}\right)\right)=2(1-\sqrt{17})$. # # In[ ]: # Exercise # --- # 1. Find the extrema of $f (x, y) = x y^2$ with $2 x^2 + y^2 = 12$. # - Find the extrema of $f (x, y, z) = 10 x + 2 y + 6 z$ with $x^2 + y^2+ z^2 = 35$. # In[117]: #from sympy import jacobian #grad = lambda func, vars : Matrix(1,1,[func]).jacobian(vars) f1=x*y*y cond=12-2*x*x-y*y L=f1+l*cond cpts=solve(grad(L,[x,y,l]),[x,y,l]) print(max([p[0]*p[1]*p[1] for p in cpts])) # In[186]: f=x*y*y cond=12-2*x*x-y*y lagrangian(f,[x,y],[cond]) # In[187]: f=10*x+2*y+6*z cond=35-x*x-y*y-z*z lagrangian(f,[x,y,z],[cond]) # Exercise p1138 # --- # **10.** Find the extrema of $f(x,y)=x^2+y^2$ with $x^4+y^4=1$. # In[84]: from sympy import symbols,solve x,y,z,l,m=symbols("x y z l m",real=True) # In[51]: f1=x*x+y*y cond=1-x**4-y**4 L=f1+l*cond cpts=solve(grad(L,[x,y,l]),[x,y,l]) print("Maximum is %s" %max([p[0]*p[0]+p[1]*p[1] for p in cpts])) print("Minimum is %s" %min([p[0]*p[0]+p[1]*p[1] for p in cpts])) # In[184]: f1=x*x+y*y cond=1-x**4-y**4 lagrangian(f1,[x,y],[cond]) # # **14.** Find the extrema of $f(x,y)=x^2+y^2+z^2$ with $y-x=1$. # In[66]: f2=x*x+y*y+z*z cond2=1+x-y L2=f2+l*cond2 cpts=solve(grad(L2,[x,y,z,l]),[x,y,z,l]) #print("Maximum is %s" %max([p[0]*p[0]+p[1]*p[1]+p[2]*p[2] for p in cpts])) #print("Minimum is %s" %min([p[0]*p[0]+p[1]*p[1]+p[2]*p[2] for p in cpts])) cpts # In[183]: f2=x*x+y*y+z*z cond2=1+x-y lagrangian(f2,[x,y,z],[cond2],solvable=False) # Since $x^2+y^2+z^2\ge0$, only minimum attains and at $(x,y,z)=(-1/2,1/2,0)$, i.e. min=$1/2$. # # **18.** Find the extrema of $f(x,y)=x+y+z$ with $x^2+y^2=1$ with $x+z=2$. # In[70]: f3=x+y+z cond31=1-x**2-y**2 cond32=2-x-z L3=f3+l*cond31+m*cond32 cpts=solve(grad(L3,[x,y,z,l,m]),[x,y,z,l,m]) print("Maximum is %s" %max([p[0]+p[1]+p[2] for p in cpts])) print("Minimum is %s" %min([p[0]+p[1]+p[2] for p in cpts])) # In[188]: f3=x+y+z cond31=1-x**2-y**2 cond32=2-x-z lagrangian(f3,[x,y,z],[cond31,cond32]) # # **22.** Find the extrema of $f(x,y)=x^2y$ with $4x^2+y^2\le4$. # In[140]: f=x**2*y solve(grad(f,[x,y]),[x,y]) # Actually, set of critical points is $(x,y)=\{(0,y),y\in(-2,2)\}$, infinite points included. # In[9]: f=x*x*y cond=4-4*x**2-y**2 lagrangian(f,[x,y],[cond]) # After all, Maximum is $4\sqrt3/9$, and Minimum is $-4\sqrt3/9$. # # In[ ]: # The Method of Least Squares # --- # # Suppose that there are $n$ paired data, $(x_1, y_1), (x_2, y_2), \cdots, # (x_n, y_n)$, that were observed in one experiment. Can we find the approximate # relation between $X = x_i$ and $Y = y_i$? # # # # # The real relation between $X$ and $Y$ can not be found out even by rigours # theory. Thus the approximation will be a good replaced solution. There are # still some problems that have to be considered: # 1. Which relation do we want? The simple linear relation, i.e. $Y = m X + # b$, is a good suggestion; # - Since the relation is an approximation, the error can not be ignored. # As shown in the last picture: # $$l_1, l_2, \cdots, l_5 \text{ errors}$$ # # The linear approximation will be a good candidate if the sum of errors # # $$ E = l_1 + \cdots + l_5 $$ # is minimum! But different signs of errors will reduce the sum of errors. # This means that the sum of errors is very small but the differences between # exact values and observed data are very large. Therefore we can consider to # minimize the sum of the square of errors: # # $$ \color{brown}{E' = l_1^2 + \cdots + l_5^2} $$ # # The following famous theorem given by Gauss describes how to predict the # relation from the data come from the real world: # # # Theorem # --- # The line $l = m x + b$ that best fits the data points $(x_1, y_1), (x_2, # y_2), \cdots, (x_n, y_n)$ is the line for which sum of the sum of square # errors # $$ E_1 + E_2 + \cdots + E_n, \text{ where } E_i = (y_i - m x_i - b)^2 $$ # is a minimum and # # $$ m = \frac{\overline{x y} - \bar{x} \bar{y}}{\overline{x^2} - \bar{x}^2}, # b = \frac{\overline{x^2} \bar{y} - \bar{x} \overline{x y}}{\overline{x^2} # - \bar{x}^2} $$ # Here, we use the notation of "average of variable", # $\overline{\color{brown}{\cdot}}$, to represent the sum of relative # variables, for example, # # $$ \overline{x y} = \frac{1}{n} \sum_{k = 1}^n x_k y_k $$ # # # **Proof** # # Since the sum of total error, $E_i$, is sum of (positive) # square of errors, it must attain its minimum, i.e. # # $$ E = \sum_{k = 1}^n E_i = \sum_{k = 1}^n (y_i - \color{brown}{m} x_i - # \color{brown}{b})^2 $$ # $\min E$ exists since the last sum is sum of positive squares. Then the # critical value satisfies # # $$ 0 = \frac{\partial E}{\partial m} = - 2 \sum_{k = 1}^n x_i (y_i - m x_i - # b) $$ # # $$ 0 = \frac{\partial E}{\partial b} = - 2 \sum_{k = 1}^n (y_i - m x_i - b)$$ # And these can be reduced into the following linear system equations: # # $$ m \sum_{k = 1}^n x_k^2 + b \sum_{k = 1}^n x_k = \sum_{k = 1}^n y_k x_k # \longrightarrow \color{brown}{m} \overline{x^2} + \color{brown}{b} # \bar{x} = \overline{x y} $$ # # $$m \sum_{k = 1}^n x_k^{} + n b = \sum_{k = 1}^n y_k \longrightarrow # \color{brown}{m} \overline{x^{}} + \color{brown}{b} = \overline{y}$$ # # And by the general procedure of solving linear system of equations: # # \begin{eqnarray*} # m & = & \frac{\left|\begin{array}{cc} # \overline{x y} & \bar{x}\\ # \overline{y} & 1 # \end{array}\right|}{\left|\begin{array}{cc} # \overline{x^2 } & \bar{x}\\ # \overline{x} & 1 # \end{array}\right|}\\ # & = & \frac{\overline{x y} - \bar{x} \bar{y}}{\overline{x^2} - \bar{x}^2} # \\ # b & = & \frac{\left|\begin{array}{cc} # \overline{x^2} & \overline{x y}\\ # \overline{x} & \bar{y} # \end{array}\right|}{\left|\begin{array}{cc} # \overline{x^2 } & \bar{x}\\ # \overline{x} & 1 # \end{array}\right|}\\ # & = & \frac{\overline{x^2} \bar{y} - \bar{x} \overline{x # y}}{\overline{x^2} - \bar{x}^2} # \end{eqnarray*} # # # we have the result. # # # # Example # --- # The discount rate (in $\%$) for 5 months beginning in June of a given year # in U.S.A. is as following table: # # # June July August September October # 14 13 10 10 9 # # 1. Find the linear approximation for discount rate with respect to time # (month), i.e. the least square regression. # - Predict the discount rates in November and December. # # **Sol:** Let $x_i$ be the number of $i$-months after June with $y_i$ # be the discount rate during this month, then we # have # # $$ \sum_{i = 1}^5 x_i = 10 ; \sum_{i = 1}^5 y_i = 56 ; \sum_{i = 1}^5 x_i^2 = # 30 ; \sum_{i = 1}^5 x_i y_i = 99. $$ # # # **1. ** # # $$y = m x + b = \frac{5 \cdot 99 - 10 \cdot 56}{5 \cdot 30^{} - 10^2} x # + \frac{30 \cdot 56 - 10 \cdot 99}{5 \cdot 30^{} - 10^2} = - \frac{13}{10} x # + \frac{69}{5}$$ # # **2.** Since Nov. and Dec. $x'$s are 5 and 6 respectively, we have # # $$ y_{\text{Nov}} = - \frac{13}{10} 5 + \frac{69}{5} = 7.3\%;\\ y_{\text{Dec}} # = - \frac{13}{10} 6 + \frac{69}{5} = 6\% $$ # In[126]: x=np.arange(0,5,1) y=[14, 13, 10, 10, 9] A=np.column_stack([x,np.ones_like(x)]) c,resid,rank,sigma=np.linalg.lstsq(A,y) z=c[0]*x+c[1]*np.ones(len(x)) plt.plot(x,z) plt.scatter(x,y) for i in range(len(x)): plt.plot([x[i],x[i]],[z[i],y[i]],'r--') # Example # --- # Suppose the last 7 records of average week stock price for certain a company # (PRIME VIEW INTERNATIONAL CO., LTD.) in Taiwan is listed as follows: # $$ \begin{array}{llllllll} # \text{Week} & 3 / 26 \sim 3 / 30 & 4 / 2 \sim 4 / 6 & 4 / 9 \sim 4 / 13 # & 4 / 16 \sim 4 / 20 & 4 / 23 \sim 4 / 27 & 4 / 30 \sim 5 / 4 & 5 / 7 # \sim 5 / 11\\ # \text{Price} & 17.8 & 19.6 & 21.9 & 20.85 & 23.0 & 23.6 & 24.4 # \end{array} $$ # 1. Find the linear approximation of the relation between time (in week) # and stock price. # - Predict the stock price that will be in the next week (i.e. $5 / 14 # \sim 5 / 18$). (The real value is 25.85) # # **Sol:** # # Suppose that $(x_i, y_i)$ be the paired (week,price) record for $i = 1, 2, # 3, 4, 5, 6, 7$. Then # $$ \sum_{i = 1}^7 x_i = 28, \sum_{i = 1}^7 y_i = 151.15, \sum_{i = 1}^7 # x_i^2 = 140, \sum_{i = 1}^7 x_i y_i = 642.5 $$ # # **1.** # # \begin{eqnarray*} # m & = & \frac{\overline{x y} - \bar{x} \bar{y}}{\overline{x^2} - # \bar{x}^2}\\ # & \sim & 1.032\\ # b & = & \frac{\overline{x^2} \bar{y} - \bar{x} \overline{x # y}}{\overline{x^2} - \bar{x}^2}\\ # & \sim & 17.46 # \end{eqnarray*} # # This means # $$ y = 1.032 x + 17.46 $$ # # **2.** The price in the next week will be approximately estimated as: # # $$ 1.032 \cdot 8 + 17.46 = 25.72 $$ # # Comparing with the real value $(25.85)$, the error is within $1\%$! # # Exercise # --- # Find the least square approximations for the following data: # 1. $(x_{i,} y_i) = (0, 20), (2, 24), (4, 25), (6, 32), (8, 34)$ for # i=1,2,3,4,5 # - $(x_{i,} y_i) = (0, 160), (1, 164), (2, 168), (3, 171), (4, 175)$ # for i=1,2,3,4,5 # # **Answer** # # 1.$$\sum_{i = 1}^5 x_i = 20 ; \sum_{i = 1}^5 y_i = 135 ; \sum_{i = 1}^5 # x_i^2 = 120 ; \sum_{i = 1}^5 x_i y_i = 612. $$ # Therefore $$y = m x + b = \frac{9}{5} x + \frac{99}{5}\text{ and }y_{1994} = # \frac{189}{5}y_{2000} = \frac{243}{5}$$ # **2.** $\sum_{i = 1}^5 x_i = 10 ; \sum_{i = 1}^5 y_i = 838 ; \sum_{i = 1}^5 # x_i^2 = 30 ; \sum_{i = 1}^5 x_i y_i = 1713$. # Therefore $y = m x + b = # \frac{37}{10} x + \frac{801}{5}$ and $y_{1995} =\left. y\right|_{x = 5} = 178.7$ # $y_{1998} = \left.y\right|_{x = 5.6} = 180.92$ # # In[1]: get_ipython().system('jupyter nbconvert 6*-3.ipynb') # In[ ]: